EN

# RVC210 - RVC360



**ORIGINAL INSTRUCTIONS** 



INSTALLATION, USE AND MAINTENANCE MANUAL



COMPANY WITH
QUALITY SYSTEM
CERTIFIED BY DNV GL
= ISO 9001=



2019 - Jurop - Azzano Decimo (PN)

Reproduction, electronic storage and dissemination, even partial, are prohibited.

Jurop reserves the right to modify the products described in this manual without prior notice.

Any product names mentioned herein are the trademarks of their respective owners.



### **Contents**

| 1.  | General warnings                                         | Pag. | 4  |
|-----|----------------------------------------------------------|------|----|
| 1.1 | Introduction                                             |      | 4  |
| 1.2 | Spare part request                                       |      | 4  |
| 1.3 | Warranty terms and conditions                            |      | 4  |
| 2.  | Technical data                                           | Pag. | 5  |
| 2.1 | Dimensions and arrangement RVC 210                       |      | 6  |
| 2.2 | Dimensions and arrangement RVC 360                       |      | 7  |
| 2.3 | Dimensions and arrangement RVC 360 V1                    |      | 8  |
| 2.4 | Dimensions and arrangement accessories                   |      | 9  |
| 2.5 | Performances                                             |      | 10 |
| 2.6 | Sound pressure level                                     |      | 10 |
| 2.7 | Usage Limitations                                        |      | 10 |
| 2.8 | Lubrication                                              |      | 11 |
| 3.  | Safety and accident prevention                           | Pag. | 11 |
| 3.1 | General recommendations                                  |      | 11 |
| 3.2 | Intended use                                             |      | 11 |
| 3.3 | Fluidi convogliati                                       |      | 11 |
| 4.  | Installation                                             | Pag. | 12 |
| 4.1 | Checking upon receipt                                    |      | 12 |
| 4.2 | Storing in the warehouse                                 |      | 12 |
| 4.3 | Handling and installation                                |      | 12 |
| 4.4 | Mounting                                                 |      | 12 |
| 4.5 | Vacuum – pressure line                                   |      | 13 |
| 4.6 | Inverter hydraulic actuator                              |      | 13 |
| 4.7 | Inverter pneumatic actuator                              |      | 14 |
| 4.8 | Pump mounting - Drive connection                         |      | 14 |
| 5.  | Start up                                                 | Pag. | 16 |
| 5.1 | Starting-up of the pump                                  |      | 16 |
| 5.2 | Precautions of use                                       |      | 16 |
| 6.  | Maintenance                                              | Pag. | 17 |
| 6.1 | Ordinary maintenance                                     |      | 17 |
| 6.2 |                                                          |      | 18 |
| V   | Extraordinary maintenance                                |      | 10 |
| 7.  | Extraordinary maintenance  Malfunctions: troubleshooting | Pag. | 23 |

| 9. Cooling fans installation instructions (RVC 360) | Pag. | 34 |
|-----------------------------------------------------|------|----|
| SPARE PART DATA SHEET – RVC 360 ACCESSORIES         |      | 32 |
| SPARE PART DATA SHEET – RVC 360 D MANIFOLD SX       |      | 30 |
| SPARE PART DATA SHEET – RVC 360 D MANIFOLD DX       |      | 28 |
| SPARE PART DATA SHEET – RVC 210 ACCESSORIES         |      | 26 |
| SPARE PART DATA SHEET – RVC 210 D MANIFOLD DX       |      | 24 |



### 1. General warnings

### 1.1. Introduction

- This booklet contains the necessary instructions for a correct installation, running, use and maintenance of the pump, as well as some practical suggestions for a safe operating.
- The knowledge of the following pages will grant a long and trouble-free operation of the pump.
- Following the instructions below contributes to limiting pump repair expenses by extending its duration, as well as preventing hazardous situations, thereby increasing its reliability.
- If the pump is driven by an hydraulic motor please refer to manufacturer's specific manual.
  - It is recommended to:
    - Read, understand and apply carefully the instructions before running the pump.
    - Keep the booklet at hand and have it known to all operators.
  - Below is a brief description of the symbols used in this manual.



If these safety rules are not respected, operators can be injured and the pump or oilers damaged remarkably.



If these safety rules are not respected, the pump or system can be damaged.



Suggestions for an environment friendly use of the pump.



Useful information for an easy usage and maintenance of the pump.

- The graphic representations and photographs contained in this manual are there to illustrate the product in the parts that make it up and in specific operating phases. Though the model shown in the manual may differ from the one purchased, the operating principle at the base of the illustrated operating phase is the same.
- Pump has to be fitted with its own tag reporting the following data: Model, Serial number, Year, Max speed, Max pressure.

| Jurop MAD<br>Jurop S.p.A.<br>Azzano Decime | 50 - 33082 | $\in$ |     |
|--------------------------------------------|------------|-------|-----|
| MOD.                                       |            |       |     |
| SERIAL No.                                 |            |       |     |
| YEAR                                       |            |       |     |
| MAX PRESSURE                               | (bar)      |       |     |
| MAX SPEED                                  | (r.p.m.)   |       | ] . |

Pic. 1.1

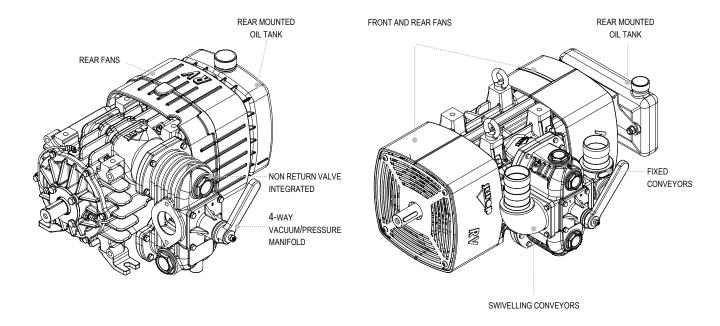
### 1.2. Spare part request

• Use only **genuine spare parts** for maintenance and repairs. To order spare parts, provide the following details:

### **EXAMPLE:**

| a) The model of the pump (see pump tag):         | RVC 360      |
|--------------------------------------------------|--------------|
| b) The serial number of the pump (see pump tag): | K90001       |
| c) A description of the parts (see parts list):  | VANE         |
| d) The quantity (see parts list):                | n°5 pz       |
| e) The code number of the part (see parts list): | 16016 059 00 |

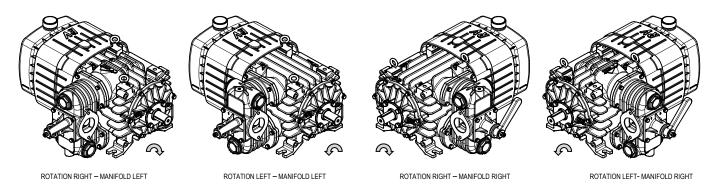
### 1.3. Warranty terms and conditions


• Compliance with the installation, use and maintenance instructions provided by this manual **is crucial for the recognition of warranty** against defective parts.

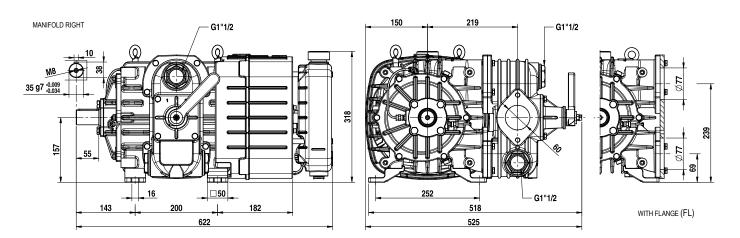


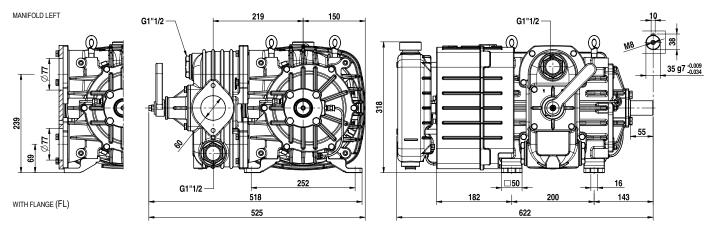
### 2. Technical data

- Rotary vacuum pump cooled by high efficiency contrapposed fans. High resistance tangential vanes. Suitable for heavy duty operation.
- The airflow reduces the temperature of the internal parts normally subjected to wear like bearings, vanes and sealings.
- Internal inlet and outlet ports specifically designed to reduce the noise level, the power absorption and the exhaust working temperature.
- Automatic lubrication with positive displacement pump. Rear mounted oil tank. Copper oil piping.
- N°2 vane inspection ports.
- Built-in 4-way vacuum/pressure manifold, side installed. Pneumatic actuator available on request.
- Non-return valve (clapet) integrated in the pump manifold.
- · Aluminum conveyors and filter suction unit.
- · Available in flanged version (FL).
- · Drive system:
  - Direct with smooth shaft;
  - With hydraulic motor (excluded RVC360 V1).

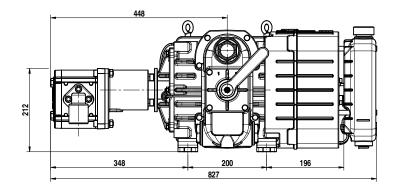

RVC 210 RVC 360

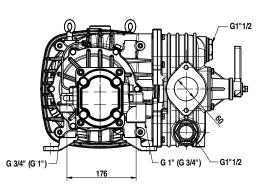



MANIFOLD RIGHT MANIFOLD RIGHT



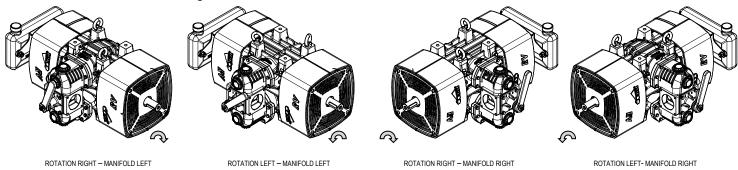

### 2.1. Dimensions and arrangement RVC 210



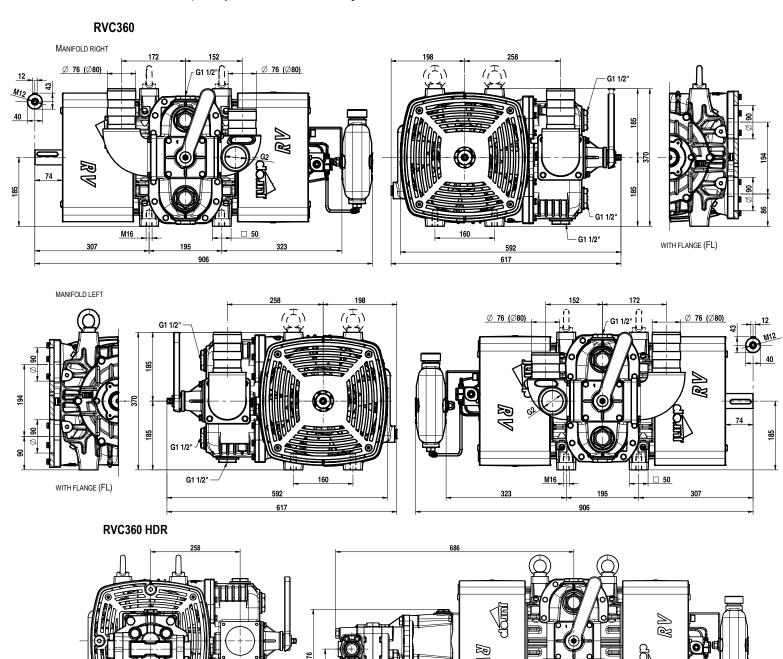


### RVC210






### **RVC210 HDR**



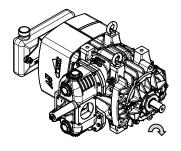


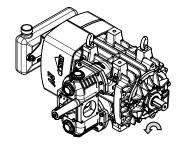


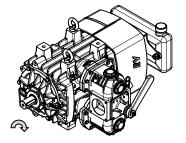

### 2.2. Dimensions and arrangement RVC 360

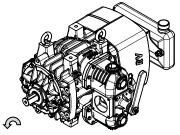


• Position of the fuel tank's cap, always on the side manifold/flange.





G1 1/4" (G1 1/2")


G1 1/2" (G1 1/4"




### 2.3. Dimensions and arrangement RVC 360 V1



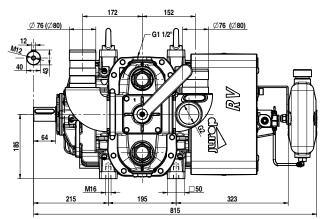


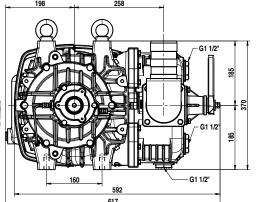


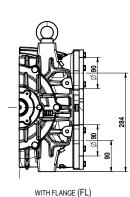


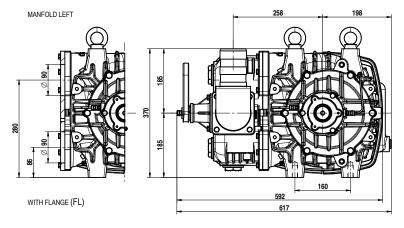
ROTATION RIGHT - MANIFOLD LEFT

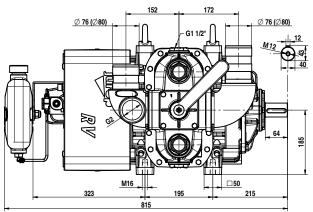
ROTATION LEFT - MANIFOLD LEFT


ROTATION RIGHT - MANIFOLD RIGHT


ROTATION LEFT- MANIFOLD RIGHT


• Position of the fuel tank's cap, always on the side manifold/flange.

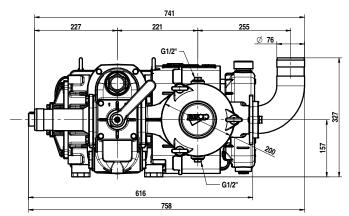

### **RVC360 V1**

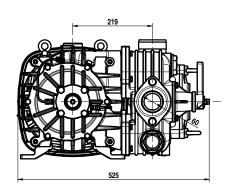




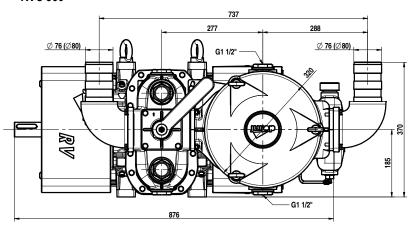


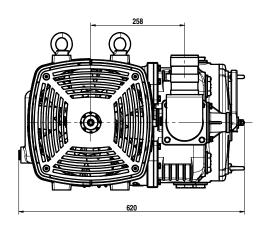


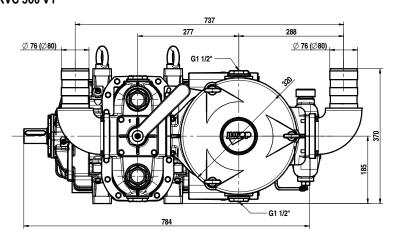



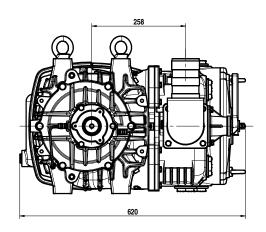




### 2.4. Dimensions and arrangement - Accessories


### **RVC 210**







### **RVC 360**





## **RVC 360 V1**







### 2.5. Performances

| Performances                                                          |          |       | <b>RVC 210</b> | <b>RVC 360</b> | RVC 360 V1 |
|-----------------------------------------------------------------------|----------|-------|----------------|----------------|------------|
| Air flow under free air condition                                     |          | l/min | 6000           | 10200          | 10200      |
| All llow under free air condition                                     |          | m³/h  | 360            | 612            | 612        |
| Air flow 60% vacuum rate                                              |          | l/min | 5300           | 9400           | 9400       |
| All flow 60% vacuum rate                                              |          | m³/h  | 318            | 564            | 564        |
| Max. vacuum at continuous duty                                        |          | %     | 75             | 80             | 70         |
| Max. vacuum                                                           |          | %     | 93             | 95             | 95         |
| Power required at free port                                           |          | kW    | 7              | 14             | 14         |
| Power required at max. vacuum                                         |          | kW    | 6              | 11             | 11         |
| Air flow at 0.5 relative bar (1.5 abs.)                               |          | kW    | 9              | 18             | 18         |
| Air flow at 1.0 relative bar (2,0 abs.)                               |          | kW    | 11             | 22             | 22         |
| Max. relative pressure (abs.)                                         |          | bar   | 1,5 (2,5)      | 1,0 (2,0)      | 1,5 (2,5)  |
| Noise Lp(A) – pump with exhaust silencer; distance: 7m in open field. | Vac. 60% | dB(A) | 72             | 74             | 74         |
| Oil consumption                                                       |          | g/h   | 120            | 140            | 140        |
| Oil tank capacity                                                     |          | 1     | 2,5            | 4              | 4          |
|                                                                       | D        | kg    | 86             | 176            | 185        |
| Mainht                                                                | D (FL)   | kg    | 77             | 166            | 175        |
| Weight                                                                | HDR      | kg    | 102            | 206            | -          |
|                                                                       | HDR (FL) | kg    | 90             | 196            | -          |

REFERENCE CONDITIONS

Conveyed gas: air

Ambient reference temperature: 20°C Vacuum pump operating at max. speed

Functioning: free air

Vacuum functioning: free outlet Actual performance may vary of +/- 5%. Absolute reference pressure: 1013mbar

Pressure condition: free suction.

| Flow - po             |       |           |       |       | Vacu | ıum   |      |      |         | Pressure (abs) |         |         |  |
|-----------------------|-------|-----------|-------|-------|------|-------|------|------|---------|----------------|---------|---------|--|
| Model                 |       | Free port | 20%   | 40%   | 60%  | 70%   | 80%  | 90%  | 1,5 bar | 1,8 bar        | 2,0 bar | 2,5 bar |  |
|                       | m³/h  | 360       | 355,8 | 346,2 | 306  | 250,2 | 162  | 42   | 331,8   | 318,6          | 310,2   | 288,6   |  |
| <b>RVC 210</b>        | I/min | 6000      | 5930  | 5770  | 5100 | 4170  | 2700 | 700  | 5530    | 5310           | 5170    | 4810    |  |
|                       | kW    | 7         | 6,8   | 6,6   | 6,4  | 6,3   | 6,2  | 6,1  | 9       | 10,5           | 11,5    | 13,5    |  |
| RVC 360<br>RVC 360 V1 | m³/h  | 612       | 605   | 595   | 564  | 453   | 310  | 106  | 570     | 550            | 540     | -       |  |
|                       | I/min | 10200     | 10080 | 9913  | 9400 | 7550  | 5166 | 1766 | 9496    | 9163           | 8997    | -       |  |
|                       | kW    | 14        | 13,5  | 13    | 12,6 | 12,3  | 11,9 | 11,2 | 18      | 20,5           | 22      | -       |  |

Vacuum pump operating at nominal speed

Actual performance may vary of +/- 5%.

### 2.6. Sound pressure level

| Lw (A)                                |                                            |         |                  |  |  |  |  |  |  |
|---------------------------------------|--------------------------------------------|---------|------------------|--|--|--|--|--|--|
| Noise power of the only pump, without | drive trasmission suction group, mufflers. | [d      | B(A)]            |  |  |  |  |  |  |
| RPM                                   | VACUUM/PRESSURE                            | RVC 210 | RVC 360 - 360 V1 |  |  |  |  |  |  |
| NOMINAL SPEED                         | vac 80%                                    | 87      | 89               |  |  |  |  |  |  |
| NOWIINAL SPEED                        | Δ press 0,6 bar                            | 98      | 100              |  |  |  |  |  |  |

### 2.7. Usage limitations

| Decrees    | Max. Spee | ed – Operating sp | eed (RPM) | P <sub>2</sub> (bar ABS) | T (9C)              | T <sub>2</sub> - T <sub>1</sub> (°C) | Environmental |
|------------|-----------|-------------------|-----------|--------------------------|---------------------|--------------------------------------|---------------|
| Pump       | Minimum   | Ordinary          | Max       |                          | T <sub>2</sub> (°C) |                                      | temperature   |
| RVC 210    | 1000 rpm  | 1300 rpm          | 1450 rpm  | 2,5 bar                  | 180°C               | 150°C                                | -20 / +40°C   |
| RVC 360    | 800 rpm   | 1100 rpm          | 1300 rpm  | 2,0 bar                  | 180°C               | 150°C                                | -20 / +40°C   |
| RVC 360 V1 | 800 rpm   | 1100 rpm          | 1300 rpm  | 2,5 bar                  | 180°C               | 150°C                                | -20 / +40°C   |

P<sub>1</sub>: absolute pressure during suction

P<sub>2</sub>: absolute pressure during delivery

T<sub>1</sub>: temperature during suction

T<sub>2</sub>: temperature during delivery

 $\mathsf{TEL.} + 39\,0434\,636811\,\mathsf{FAX.} + 39\,0434\,636812$ 

http://www.jurop.it e-mail: info@jurop.it



### 2.8. Lubrication

Recommended oils and greases: Mineral Oil

| Room Temp  | Viscosity  | ENI      | ESS0     | SHELL           | TOTAL          | MOBIL      | ВР             | TEXACO       | Q8          |
|------------|------------|----------|----------|-----------------|----------------|------------|----------------|--------------|-------------|
| Under 10°C | ISO VG 46  | Acer 46  | Nuto 46  | Morlina oil 46  | Drosera MS 46  | Nuto H 46  | Bartran HV 46  | Rando HD 46  | SHUBERT 46  |
| Over 10°C  | ISO VG 150 | Acer 150 | Nuto 150 | Morlina oil 150 | Drosera MS 150 | Nuto H 150 | Bartran HV 150 | Rando HD 150 | SHUBERT 150 |

## 3. Safety and accident prevention



Attention:

Carefully apply these prescriptions.

### 3.1. **General recommendations**

- · When transporting the compressor use proper slinging. Store the compressor in stable places.
- · Installation and maintenance must be carried out with the unit totally disengaged from its drive system and must be performed by qualified personnel.
- · Use adequate clothing (avoid ties, loose sleeves, necklaces and so on) and suitable protection equipment (gloves, protection glasses, boots...).
- · Before each maintenance operation, stop the pump and restore the atmospheric pressure.
- · Make sure that all the parts of the unit are idle and cool, before performing any maintenance operation.
- · To prevent errors and hazardous situations, establish what each operator is responsible for in the different maintenance operations.
- · Do not start the machine if the protection devices provided for transmissions are removed. Replace damaged part.
- Final manufacturer must make the transmission inaccessible by means of a fixed guard or interlocked movable guard.
- · Operators working nearby must avoid prolonged exposure to the noise emitted by the aspirator, if not equipped with the proper earprotection devices (IPDs recommended: ear protectors).
- · When the pump is running, some parts may reach very high temperatures (above 70°C). Use all necessary precautions to avoid contact.
- · Avoid accidental suction of solids: solids may be projected at high speed through the exhaust manifold and cause injures. A filter must be mounted on the suction line (Mesh 55).
  - Pressure relief valve: point the air flux away from the operators.
- Do not use the aspirator over its designed limits: the machine may be damage and the operator may be injured.



Do not exceed the speed and the power supply parameters indicated in the technical tables (see par. 2.5 - 2.7).

· Based on the final use of the decompressor, the insertion in the housing machine and the typology of the same, the designer of the housing machine must apply safety signals (pictograms) to warn the operator on the risk still present. These pictograms essentially refer to three categories:

- Signals prescribing the use of Individual Protection Devices (IPDs) such as, in this case, the use of gloves and ear protectors.
- Signals indicating to pay particular attention to the dangers related to the machine's components, such as: risk of dragging in the transmission equipment and contact with hot surfaces.
- Signals indicating specific parts of the machine for an easier identification, such as: greasing points, oil tanks, etc.

### 3.2. Intended use

- The vacuum pumps RVC are designed to convey filtered air into systems for the vacuum production or for the suction of powders or liquid wastes. Any other usage shall be considered improper.
- · Do not sack toxic substances and inflammable or explosive gasses, since the internal components of the pump may reach high temperatures.



Avoid suction of toxic (poisonous) explosive or flammable gasses because internal components may reach high temperatures.

· Liquids or solids infiltrations can seriously damage the pump.



11/36

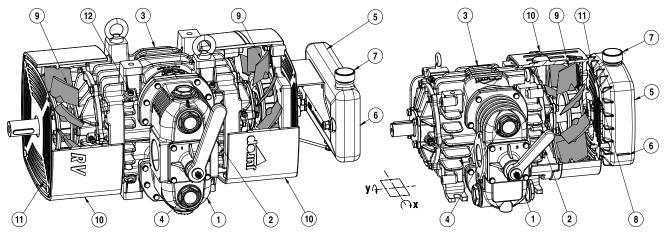
Attention: liquids or solids infiltrations can seriously damage the pump.

• Do not run the pump over its designed operating limits (see par. 2.6): it may break and transmission can be damaged.

### 3.3. Conveyed fluids

- RVC vacuum pumps are suitable for conveying filtered air. Before conveying other kind of gases, verify compatibility with pump's characteristics.
- · The machine was not designed and built to operate in environments with potentially explosive atmosphere (outdoor or indoor).
  - Please contact JUROP's Technical dept. if necessary.

Jurop SpA Via Crosera n° 50 33082 Azzano Decimo, PN (Italy) TEL. +39 0434 636811 FAX. +39 0434 636812




### 4. Installation

Legend of main components

- 1. Manifold (with not-return valve)
- 2. Vacuum-pressure manifold
- 3. Housing pump
- 4. Vacuum relief valve connection
- 5. Lubricating oil tank
- 6. Tank oil stand
- 7. Oil filling port
- 8. Lubrication pump

- 9. Cooling fan
- 10. Air cooling conveyors
- 11. Fan protection
- 12. Vanes inspection ports



Pic. 4.1

### 4.1. Checking upon receipt

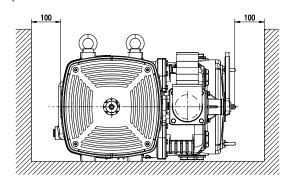
- When the goods are delivered, make sure that all parts in perfect condition and have suffered no damage during shipping.
- Make sure the vacuum pump has its identification plate affixed on the front cover. Pumps without such identification are to be considered anonymous and potentially dangerous: in such an event, they must not be used, otherwise the manufacturer will be deemed free from any liability whatsoever.

### 4.2. Storing in the warehouse

- If the compressor will not be installed inside a short time after delivery:
  - Remove the guards from the ports and spray a film of protective oil over the inner surfaces of the body, rotors and sides. Then attach again the guards;
  - Store in a closed and dry place. Renew the preserving oil periodically.
  - To temporarily store a used pump, follow the instructions below:
  - Thoroughly clean the pump.
  - Equip the pump with suitable anti-corrosion protection.

### 4.3. Handling and installation

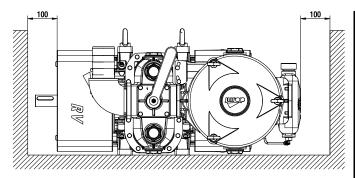
- Before each movement, verify that the lifting equipment has a suitable capacity (check the weight of the decompressor, possibly showed in this manual, in the paragraph 2.5).
- Do not lift the packaging or the machine when moving more than 50 cm from the ground. Proceed with the final lifting only near the installation point.


• Harness the machine with suitable straps / chains near the main body, paying attention to the position of the mass centre of gravity to ensure the load stability.



Warning: do not stand under the machine when it is lifted during the installation.

### 4.4. Mounting


- The mounted aspirator must be accessible for maintenance and firmly fixed on a frame or angled base with a 3° max inclination on X and Y axes (see Fig. 4.1). The structure must be fit to avoid flexions or vibrations.
- Provide enough space for air ventilation and disposal of heat when pump is running. See Fig. 4.2 and 4.3 for indication of the distance to be respected.



Pic. 4.2

• Provide the necessary space to reach all points of lubrication control (oil level), and the oil tank filler cap, the lever of the 4-way switch, vanes inspection ports.





Pic. 4.3

- In case of RVC with hydraulic motor, provide the necessary space to disassemble the motor itself and proceed with joint lubrication.
- In the event that the decompressor is electrically isolated, connect it to the ground or make it equipotential with the housing machine. Check that the paint does not prevent its passage.

### 4.5. Vacuum - pressure line

• See Fig. 4.4.

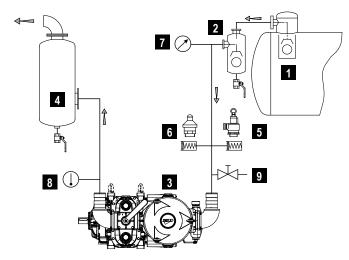



Fig. 4.4

| Va | Vacuum line components    |  |  |  |  |  |  |
|----|---------------------------|--|--|--|--|--|--|
| 1. | Primary shutoff           |  |  |  |  |  |  |
| 2. | Secondary shutoff         |  |  |  |  |  |  |
| 3. | Suction filter            |  |  |  |  |  |  |
| 4. | Silencer – oil separator  |  |  |  |  |  |  |
| 5. | Overpressure safety valve |  |  |  |  |  |  |
| 6. | Vacuum relief valve       |  |  |  |  |  |  |
| 7. | Manomerer -1 +3 bar       |  |  |  |  |  |  |
| 8. | Thermometer 200°C         |  |  |  |  |  |  |
| 9. | Venting shutter           |  |  |  |  |  |  |

• In order to avoid the suction of liquids, a primary flow shutoff valve (Pos. 1) and a secondary shutoff (Pos. 2) are to be mounted on the suction line. If necessary, also apply a suction filter (Pos. 3) to prevent solids from entering.

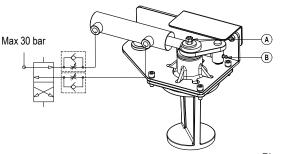
• The silencer (Pos. 4) applied to the pump exhaust - besides reducing the noise level - is designed to separate the oil mist expelled from the pump outlet port. The separator must be easily drained from oil and condensate accumulated at regular intervals.



Do not dispose of in the environment. Dispose of in compliance with the standards in force.

- The diameter of the vacuum or pressure line pipes must be properly dimensioned to the pump flow and, in any case, it must be larger than the diameter of the ports.
- The pipes weight or their dilatations must not solicit the pump housing. Use high temperature resistant rubber connections.
- Before mounting, remove the port protections. All pipes and line components must be clean.
- Avoid restrictions and tight curves as much as possible, if not strictly necessary.
- Exhaust pipe can reach high temperatures. Hence, they must be properly isolated.
- An over-pressure safety relief valve (Pos. 5) should be mounted in order to prevent the overloading of the vacuum pump. Mount the valve near the pump without applying any gate valves on the line.
- A vacuum relief valve (Pos. 6) should be applied to limit the maximum vacuum rate at 75% (RVC 210) and at 80% (RVC 360) in order to prevent the pump running at continuous duty from overheating.
- Venting shutter (Pos. 9): it is also useful to cool down the overheated pumps as well as for their internal wash-up. Direct the air flow away from the operators.
- Thermometer (Pos. 8): it must be installed at maximum 150 mm from the exhaust port. The sensitive element must reach the pipe centre. Safety thermostat on manifold is supplied on request.
- An oil-separator must be installed in correspondence of the discharge line of RVC. Besides reducing the noise produced by the air flow along the vacuum line, the silencer also traps the oil vapour at the outlet due to decompressor lubrication.

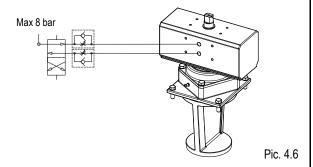



Attention: an oil-separator must be installed in correspondence of the discharge line.

### 4.6. Inverter hydraulic actuator

- Extraordinary maintenance operations can require the upper cover (and that of the actuator, either manual or pneumatic) to be removed. We recommend ensuring enough space to carry out such operations.
- If the cock blocks or it moves with friction, screw up the clearance regulation nut (A). Screw up  $\frac{1}{4}$  of turn each time. Block the nut rotation with the safety nut.
- The lubrication points (B) and the clearance regulation bolt (A) must be accessible. See Pic. 4.5.
  - Lubricate with grease every 1000 cycles. Grease type NLGI 2.
- It is suggested to install 2 one-way flow controller between the hydraulic switch and the hydraulic actuator. Set the flow controllers in order to prevent hard hitting through the end of stroke. Minimum commutation time: 1 second.
  - Maximum feed pressure: 30 bar.
  - To order spare parts see spare parts list at the end of this manual.

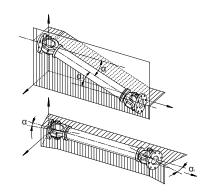



· Possible correct hydraulic connection.



Pic. 4.5

### 4.7. Pneumatic actuator adjustment


- In the event of 4-way valves equipped with pneumatic actuator, we recommend installing two one-way flow regulators between the pneumatic "control" and the pneumatic actuator. The following figure shows a schematic view of a possible pneumatic installation.
- We recommend adjusting the two flow regulators in order for rotation to occur without knocks and with a switching time of at least one second
- In case of interruption of the pneumatic supply, the inverter of the suction unit remains in the same position it was when the failure occurred.



### 4.8. Pump mounting - Drive connection

### A) Cardan shaft drive

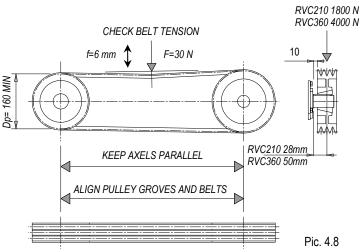
· Use telescopic cardan shafts.



- In order to achieve a uniform motion of the driven shaft, the following requirements must be met (see Pic. 4.7):
  - Equal working angle  $\alpha$  and  $\alpha_1$  of both couplings.
- The internal fork joints must be coplanar.
- Both driven and driving shafts must be coplanar.
- It is also recommended working with limited articulated joint angles (max 15° at 1000 rpm and max 11° at 1300 rpm) and disengaging the transmission for those operations requiring great angles (steering or lifting).



Follow the rotation direction as indicated on the front flange. Follow the instructions of the cardan shaft's manufacturer.


• Use the cardan guard supplied with the pump, by fixing it to the pump itself.



Use the cardan guard supplied with the pump, by fixing it to the pump itself. In any case, the installation, by the final installer, must comply with the current EC accident prevention regulations and must be compatible with the geometry of the protection cap supplied with the machine.

- The protection must not be removed; in case of removal, it is the responsibility of the final installer to provide for suitable guards according to the assembly.
- It is the responsibility of the final installer to provide for suitable guards, in presence of transmission shafts exposed during normal operation.

### B) Belt drive



- Install a suitable pulley on the smooth shaft as close as possible to the pump: 28 mm (RVC210) or 50 mm (RVC360). Taper lock pulley are suggested.
- Apply an adequate belt tension (see manufacturer's data). Max 1800 N for RVC 210 and 4000 N for RVC 360.
- Do not use diven or driving pulleys with a pitch diameter inferior to 160 mm. Small pulleys require a high belt tension, which may cause premature wear to the bearing or transmission damages.

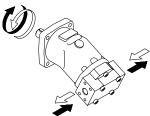
Pic. 4.7

TEL. +39 0434 636811 FAX. +39 0434 636812



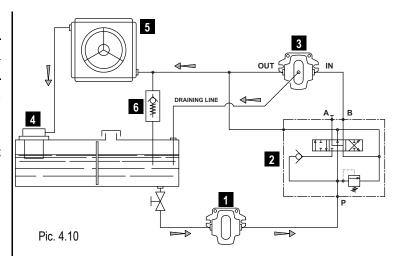
- Let the air circulate freely to cool down the pump. Provide protections, which ensure adequate ventilation.
- A limited speed ratio will extend the belts life and reduce stress on the shafts. When possible prefer:
- Pulleys with a pitch diameter bigger than the one indicated,
   Dp=180mm;
- Engines or power take-offs with a speed similar to the one of the pump.

| Pump           | Drive min. pulley p. diam. | T. max | Belts   | Max. Speed | Max. Pressure | Max. Vacuum. |
|----------------|----------------------------|--------|---------|------------|---------------|--------------|
| RVC 210        | 160 mm                     | 1800 N | XPB x 3 | 1450 rpm   | 2,5 bar abs   | 93%          |
| <b>RVC 360</b> | 160 mm                     | 4000 N | XPB x 3 | 1300 rpm   | 2 bar abs     | 95%          |
| RVC 360 V1     | 160 mm                     | 4000 N | XPB x 3 | 1300 rpm   | 2,5 bar abs   | 95%          |


### C) Hydraulic drive (excluded RVC360 V1)

| Modell   |             | Displacement | Operating pressure | Flow               | Max pressure draining line | Max. pressure motor exhaust | Max pressure |
|----------|-------------|--------------|--------------------|--------------------|----------------------------|-----------------------------|--------------|
| RVC 210  | Vac. Max.   | 34 cc/rev    | 120 bar            | 50 I/min (1450rpm) | 5 bar                      | 5 bar                       | 210 bar      |
| KVC 210  | 0,5 bar rel | 34 cc/rev    | 205 bar            | 50 I/min (1450rpm) | 5 bar                      | 5 bar                       | 210 bar      |
| D)/O 000 | Vac. Max.   | 61 cc/rev    | 130 bar            | 83 I/min (1300rpm) | 5 bar                      | 5 bar                       | 180 bar      |
| RVC 360  | 0,5 bar rel | 61 cc/rev    | 160 bar            | 83 I/min (1300rpm) | 5 bar                      | 5 bar                       | 180 bar      |

• Fluid: mineral oil for hydraulic systems in compliance with ISO/DIN.


| Temperature  | Optimum viscosity ale | Max. viscosity allowed |
|--------------|-----------------------|------------------------|
| -20 / +80 °C | 12 – 100 cSt          | 750 cSt                |

- Filtration: class 19/16 contamination according to ISO 4406 to be obtained with a &x = 75 filter.
- Check circuit connections: they must be applied in the same rotation direction as that indicated by the arrow on the pump front flange.



Pic. 4.9

- **Draining**: connect directly to the tank above the maximum oil level. Operating without draining line may damage the motor.
- **Distributor**: open-centre distributor in central idle position (vacuum pump off). It must be equipped with an adjustable overpressure safety valve.
- Motor pipeline: outlet pipe must not be of a smaller diameter than that of the inlet port. Inlet pipes always have a diameter smaller than outlet pipes. Choose preferably flexible pipes to avoid vibration transmission.
- **Tank**: with suction pipe and return separated by baffles. If necessary, use a heat exchanger to avoid oil heating above 70-80°C and protect it from extreme pressure with a pressure relief valve. Minimum approximate capacity: as twice as the circulation flow.



| 1 | Hdr pump    | 4   | Oil filter     |
|---|-------------|-----|----------------|
| 2 | Distributor | 5 * | Heat exchanger |
| 3 | Hdr motor   | 6 * | Safety valve   |

- \* optional components
- Starting-up: be sure that the system is well cleaned and pour oil into the tank and into the motor housing (necessary to lubricate the internal bearings).
- Vent the circuit and adjust the overpressure safety valve to the lowest possible value.
  - Check the oil tank level.
- Increase pressure and rotation speed until operating values are eached.
- The machine/system manufacturer is responsible for dimensioning the lines.



The machine/system manufacturer is responsible for dimensioning the lines.



### 5. Start up

### 5.1. Starting-up of the pump

- Check oil levels in rear mounted tank.
- · Refill the tank with lubrication oil.
- In order to choose the most suitable oil, see paragraph 2.8.
- Open all valves of the vacuum-pressure system.
- Open all gate valves and remove any possible obstacle from the line.
  - Check that all protection devices are correctly installed.
- Check rotation direction: open all system valves and start running slowly.



Do not rotate in the wrong direction: this may damage the vacuum pump. Follow the arrow indicated on the front flange.

- Check which position of the four-way integrated valve lever allows vacuum or pressure functioning.
  - Close the valve and increase vacuum rate (or operating pressure).
- Check loading and operating speed for vibrations or unusual noises.



This vacuum pump is designed to work at maximum speed, but for longer operating we recommend the pump be run at working speed (see par. 2.7).

- $\bullet$  To reduce the vacuum rate to 75% max (RVC 210) and 80% max (RVC 360).
  - Prepare adequately transmission.

### 5.2. Operating precautions

- Run the vacuum pump at a room temperature of -20°C e +40°C.
- Running at continuous duty: see paragraph 2.5.
- Do not make the vacuum pump overheat. Maximum air temperature on exhaust (or delivery) side: 160-180°C.
- If maximum temperature allowed is reached, in order to prevent damages to the internal parts, it is recommended:
  - to reduce the vacuum rate or the working pressure by opening the venting port;
  - to reduce the pump speed according to list at paragraph 2.7.
  - to start running the pump again only when temperature at exhaust is below acceptable values.
- Do not operate the pump without lubrication: it may cause quick wear and possible breakdown of vanes.
- Do not start running the pump under load: that causes stress to the drive system and the hydraulic motor.
  - Check rotation speed. The vacuum pump must:
  - Never exceed the maximum speed: it may cause overheating;
  - Never run below the minimum speed: this may cause an anomalous wear of the housing.
- Do not accidentally operate the pump in the wrong direction: it may break the vanes.

- Do not convey the exceeding delivery outlet towards the suction port, otherwise it will sack warm gas.
- In vehicles do not direct compressor's discharge to the intake of the engine.
- Control the air flow by adjusting the rotation speed: do not use the pressure relief valve to discharge the exceeding flow.
- Once the needed vacuum rate has been reached, we recommend reducing the vacuum pump speed to its working speed (see par. 2.7): this allows keeping the achieved vacuum/pressure rate constant. The pump speed can also be reduced to values lower than the working speed during the tank discharging phase (with the 4-way valve in pressure mode) without increasing the draining time.
- Thus, exhaust temperature is reduced, vane durability is increased and both oil consumption and power absorption are reduced.



Once the needed vacuum rate has been reached, we recommend reducing the vacuum pump speed to its working speed.

- After operation in dusty environments, after accidental sucking of liquids inside the pump or before a long inoperativity period it is recommended to wash the pump inside according to the following procedure:
- Before washing the pump, be sure that it has cooled down. To obtain this in a short time, it is possible to run the pump for a few minutes at zero vacuum conditions, or stop it at all;



Attention: Do not carry out this operation on very hot pumps (for example after a working day) until they have cooled down.

- 2. Use 1-2 liters of water mixed with a non-flammable detergent. We suggest some product like Henkel Bonderite C-NE 5225: 5% concentration in water. This detergent grants a good protection against rust and oxidation.
- 3. Use one of the openings placed in the vacuum line (closet on the pump) to suck some water mixed with detergent.
- **4.** Start the pump at low speed leaving opened all the suction valves in the tank, in order to keep low the vacuum rate (max vac. 10-20%). Let the detergent mix entering the pump very slowly.
- **5.** The detergent mix stays suspended in the pump inside, before being expelled through the exhaust silencer.
- 6. After keeping the pump speed for a while to make the product reaching the internal parts, it is necessary to dry the pump preventing oxidation. When the detergent mix is finished, continue running the pump at the lo west possible vacuum rate for a few minutes, then close venting and suction valves up to 50-60% maximum, for a couple of minutes. With this operation the pump will dry from the heated air and protected from the chemical attack of the detergent.
- 7. Washing the pump with this detergent guarantees a protection after some days of inoperativity. If the pump is not used for more than two weeks, after having washed and dried the inner parts as described above, it is recommended to suck slowly 200 cc anti-rust

Jurop SpA Via Crosera n° 50 33082 Azzano Decimo, PN (Italy) TEL. +39 0434 636811 FAX. +39 0434 636812

http://www.jurop.it e-mail: info@jurop.it



and water-repellent protective oil (or, if not available, a very fluid gear oil).



Attention: do not carry out also this operation on very hot pumps (for example after a working day) until they have cooled down.



In case the exhaust line cannot be disconnected, drain the liquids accumulated in the separator of the exhaust silencer.

### 6. Maintenance

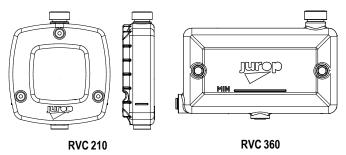
### 6.1. Ordinary maintenance

- Any interventions must be performed when the machine is cold, stopped and switched off.
- Installation and maintenance must be operated only by qualified personnel wearing the proper clothes and the necessary tools as well as protection devices.
  - Use suitable protection equipment (gloves, protection glasses, boots...)
  - In the following table summarizes the main controls to be performed and the frequency of intervention.

| Operating Condition | Maintenance Area | Check                                           | 8н | 50н | 500н | 1000H |
|---------------------|------------------|-------------------------------------------------|----|-----|------|-------|
|                     | Vacuum Line      | Check safety valve                              |    |     |      |       |
| OPERATING           | vacuum Line      | Operating pressure                              |    |     |      |       |
|                     | Transmission     | Rotation speed                                  |    |     |      |       |
|                     | Pump             | Sound pressure level (also HDR motor)           |    |     |      |       |
|                     |                  | Drain the oil gathered in the exhaust separator |    |     |      |       |
|                     | Vacuum Line      | Clean filter and vacuum line shutoff            |    |     |      |       |
|                     |                  | 4-way changeover valve: check and lubricate     |    |     |      |       |
|                     |                  | Clean suction filter                            |    |     |      |       |
|                     | - Pump           | Rear mounted tank oil level (1)                 |    |     |      |       |
| STANDSTILL          |                  | Clean fan protections                           |    |     |      |       |
|                     |                  | Check vanes wear                                |    |     |      |       |
|                     |                  | Pump's inner washing (2)                        |    |     |      |       |
|                     |                  | Greasing                                        |    |     |      |       |
|                     | Overall          | Check cardan shaft drive                        |    |     |      |       |
|                     |                  | Chack transmission pulley                       |    |     |      |       |

- (1) In order to choose the most suitable oil, see paragraph 2.8.
- (2) After operation in dusty environments, after accidental sucking of liquids inside the pump or before a long inoperativity period it is recommended to wash the pump inside according to the procedure described at paragraph 5.2.

### **Checking lubrification**


• Check the correct operation of the system / lubrication circuit.



If the pump is run without lubrication, the internal components may quickly damaged due to overheating. Stop the vacuum pump and check the oil level and the lubricating pump.

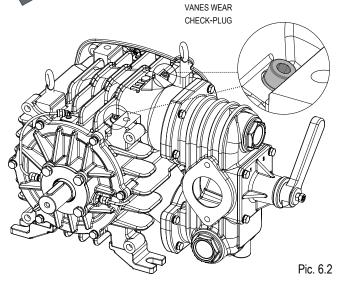
### Checking the rear mounted oil tank level

• Not run the pump with oil level under the minimum level: that may lead to dry functioning and cause serious damages. See Fig. 6.1.



Pic. 6.1

- Tank capacity: RVC210 2,5 I; RVC360 4I
- · Use pure fresh oil.



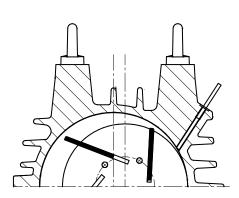

Do not re-use the exhausted oil gathered on the bottom of the exhaust silencer.

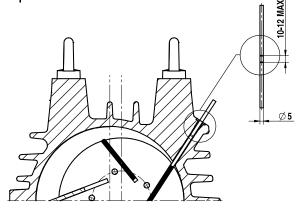
### Checking the vanes wear

 Unscrew the vanes wear check-plug on the front flange. See Fig. 6.2.






- Turn the shaft by hand until vanes appearance.
- Vanes usually slip on seat bottom due to gravity. Check their right entry in the seat.


- Insert a  $\emptyset$  5 mm stick until it touches the rotor and then mark (see Fig. 6.3)
- Turn the rotor slowly until the stick touches the vane in idle position in its seat. The vanes slide to the bottom of the seat due to gravity: check they really do and mark again on the stick.
- Repeat the same procedure for all the vanes. If wear exceeds 8 mm (RVC 210) or 10 mm (RVC 360): replace the vanes as soon as possible.
- Maximum acceptable wear: 10-12 mm. Immediately replace: vanes are likely to break down.
  - Replace all the pump vanes at the same time.



Replace the vanes when their wear exceeds 10-12 mm (L-L min): they may break. Replace all vanes at the same time.

• Replace the cap after the measurement.



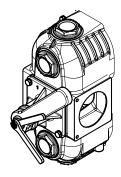


Pic. 6.3

### 6.2. Extraordinary maintenance

- Except for the cases described below, extraordinary maintenance on a RVC must be carried out by specialized personnel only; otherwise the guarantee will be invalidated.
- All extraordinary maintenance interventions must be carried out when the machine is cold, stopped and switched off. Implement the safety instructions reported in the "Safety and accident prevention" Chapter, before performing any maintenance operation.




Follow the safety prescriptions as described in Cap. "Safety and accident prevention".

### Adjusting the 4-way valve

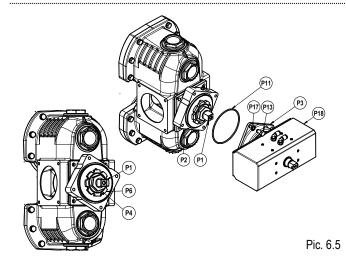
- $\bullet$  For pumps equipped with handle for manual operation or actuator.
- Adjust the screws to avoid the valve blocking in its seat (see Fig. 6.4).



Attention: do not exceed with the adjustment: possible vacuum loss.



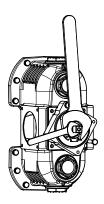
Pic. 6.4


### Adjusting the pneumatically operated 4-way valve

- In case of reduced performance or difficult rotation of the valve in its seat, it is necessary to adjust the operating play.
- Unscrew the 4 screws M8x16 which fasten the top cover (P3) to the inferior support (P2).
  - Clean the inner part from the lubricant.
- "Mark" the initial position of the cock (P1). When mounting the cock back in place, it must be in the same position.

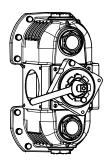
TEL. +39 0434 636811 FAX. +39 0434 636812

http://www.jurop.it
e-mail: info@jurop.it






• Turn the valve until one of the cock regulation ferrules (P6) coincides with one of the threaded holes on the inferior flange (P2). Block temporarily the nut ferrule with a screw.




• Hold the valve in place with a 17 mm spanner and loosen the nut (P4) over the ferrule by  $\frac{1}{2}$  -  $\frac{3}{4}$  turn with a 36 mm spanner.

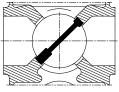


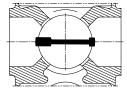
Pic. 6.6

- Valve adjustment: turn the valve clockwise by 1/8 turn (45°) in order to lower it (in case of excessive play between the valve and its seat and of reduced performance) or anticlockwise by 1/8 turn (45°) to raise it (in case of difficult rotation of the valve in its seat).
- Hold the valve in place with the spanner and fasten the nut (P4) above the ferrule.



Pic. 6.7


19/36


 Remove the screw which temporarily blocks the ferrule and check for the correct rotation of the valve by adjusting the shaft frame. Repeat the valve adjustment, if necessary.



Attention: get the valve back into the previously "marked" position. Otherwise, the valve may work improperly.

• The valve - in both its end stroke positions - must separate the air flow sucked from the pump outlet air. The pump may be started in order to check for the proper functioning.





CORRECT POSITION

POSITION INCORRECT

- · Lubricate the areas near the ferrule in order to guarantee the lubrication of parts undergoing wear.
- Set the top cover back into place. Do not forget the OR-Ring (P11). Fasten the 4 screws.

### Replacing the vanes

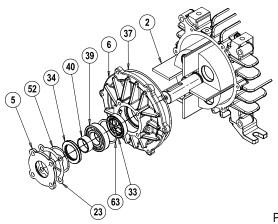
- · Remove the vacuum pump from its bearing frame and wash it before disassembling.
  - We recommend that you work on the pump front.

The following drawings refers to RVC210 (Fig. 6.8) and RVC 360 (Fig.

· Material that is subject to wear: replace.

### Disassembling - RVC210

- · Disconnect the drive system, if this is the case, and check conditions.
- · Hydraulic drive: mark the position of the driven shaft on the pump
- Remove the seal cap (5). Do not lose compensation ring (52) and seal cap gasket (23).
- Remove the vacuum pump flange (6) by using the threaded holes to extract it. Do not lose OR-Ring (37).
- · Hold the shaft before extracting the flange: the rotor weight must not solicit the internal components.
  - Extract the worn vanes (2).
  - Complete disassembling:
  - Eextract bearing (39) and seal (33) from the pump flange (6);
  - Extract seal (34) from the seal cap (5).


### Checking the wear condition - RVC210

- Check the condition of following parts:
- Seals and gaskets: they may be worn or have been damaged during disassembling.
- Bushings: we recommend they be replaced if remarkably scratched. A grinder may be needed to cut them for removal. Prevent iron filings from entering the pump.

e-mail: info@jurop.it



• Check whether the seal and the corresponding bushing need to be replaced also on the pump rear according to their general condition.



Pic. 6.8

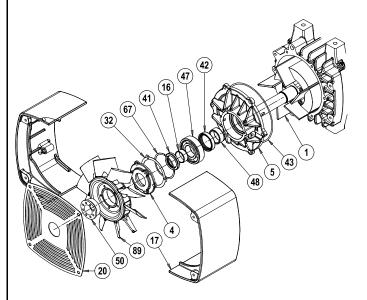
| Pos. | Code       | Description             | Q.ty |
|------|------------|-------------------------|------|
| 2    | 16016001E0 | VANE RVC210             | 4    |
| 23   | 16807003E0 | SEAL FLANGE             | 2    |
| 33   | 4022200103 | SEAL 40X62X13           | 2    |
| 34   | 4022200114 | SEAL 40X62X7 3460 VITON | 2    |
| 37   | 4022200353 | O-RING 4750 VITON       | 2    |
| 40   | 4023130009 | BUSHING 35X40X17        | 2    |
| 52   | 4026300010 | SEAL LK72               | 2    |
| 63   | 4026510535 | SEAL SEEGER             | 2    |

### Reassembly - RVC210

- Oil and then insert all vanes in their seats.
- Vacuum pump flange (11): insert seal and bearing if they have been previously removed or need to be replaced
- Seal cap (1): insert the new oil seal if replacement has been needed.
- Bushings on pump axle: new bushings may need to be warmed before reassembly. Align them properly.
  - Reassemble the parts in the following sequence:
  - Vacuum pump flange: do not damage the seal while inserting it on to the axis. Correctly centre and fasten the screws. Properly align the bearing into its seat.
  - Front seal cap: do not damage the seal while inserting it on to the axis and fasten the screws.



Do not damage components during assembly by forcing them exceedingly.




Pic. 6.9

• Do not flip the seal ring during rotation of the shaft. Do not leave foreign objects inside the pump.

### Disassembling - RVC360

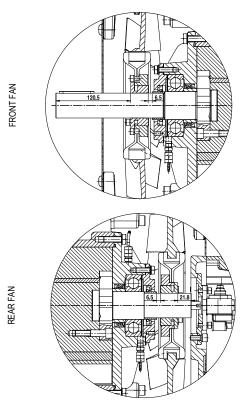
- Disconnect the drive system, if this is the case, and check conditions.
- Hydraulic drive: mark the position of the driven shaft on the pump shaft.
  - Remove the conveyor protection (20).
  - Remove the aluminium conveyors (17).
- Loosen the 4 screws which blocks the locking set (50) and remove the cooling fun (89) with the hub.
- Remove the seal cap (4). Do not lose compensation ring (67) and seal cap gasket (32).
- Remove the vacuum pump flange (5) by using the threaded holes to extract it. Do not lose OR-Ring (43).
- Hold the shaft before extracting the flange: the rotor weight must not solicit the internal components.
  - Extract the worn vanes (1).
  - · Complete disassembling:
  - Extract bearing (47) and seal (42) from the pump flange (5);
  - Extract seal (41) from the seal cap (4).



Pic. 6.10

| Pos. | Code       | Description         | Q.ty |
|------|------------|---------------------|------|
| 1    | 1601605900 | VANE RV360          | 5    |
| 16   | 1626001100 | BUSHING             | 2    |
| 32   | 1680707300 | SEAL                | 2    |
| 41   | 4022200044 | SEAL 65X45X8        | 2    |
| 42   | 4022200113 | SEAL 70X55X15 VITON | 2    |
| 43   | 4022200309 | O-RING 4875 VITON   | 2    |
| 48   | 4023130035 | BUSHING 55X45X22    | 2    |

### Checking the wear condition - RVC360


- · Check the condition of following parts:
- Seals and gaskets: they may be worn or have been damaged during disassembling.
- Bushings: we recommend they be replaced if remarkably scratched.
- A grinder may be needed to cut them for removal. Prevent iron filings from entering the pump.

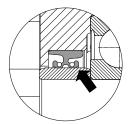


• Check whether the seal and the corresponding bushing need to be replaced also on the pump rear according to their general condition.

### Reassembly - RVC360

- · Oil and then insert all vanes in their seats.
- Vacuum pump flange (5): insert seal and bearing if they have been previously removed or need to be replaced.
- Seal cap (4): insert the new oil seal if replacement has been needed.
- Bushings on pump axle: new bushings may need to be warmed before reassembly. Align them properly.




Pic. 6.11

- Reassemble the parts in the following sequence:
- Vacuum pump flange: do not damage the seal while inserting it on to the axis. Correctly centre and fasten the screws. Properly align the bearing into its seat.
- Front seal cap: do not damage the seal while inserting it on to the axis and fasten the screws.
- Fan with docking set.
  - respect the correct distance from the axis head.
  - fasten the 4 screws of the docking set with 10 Nm coupling.
- Reassembly the conveyors and their protection.



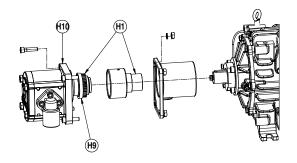
Do not damage components during assembly by forcing them exceedingly.

• Do not flip the seal ring during rotation of the shaft. Do not leave foreign objects inside the pump.



Pic. 6.12

### Mounting the hydraulic drive


- We recommend the drive coupling be oiled when vanes are being replaced. See Fig. 6.13.
  - However lubricate the drive coupling every 1500 hours.



We recommend the drive coupling be oiled every 1500 hours.

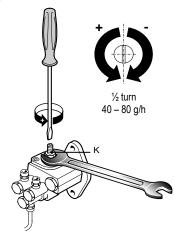
 Apply coupling hub (H1) to vacuum pump axis respecting the position marked during disassembly: the grain must go back into the seat on the rim.

### **RVC 210**



### **RVC 360**




Pic. 6.13

- Mount the coupling (H1) and lubricate internally with NLGI 2 Lithium grease.
  - Reassembly the motor without forcing onto the seals (H9).

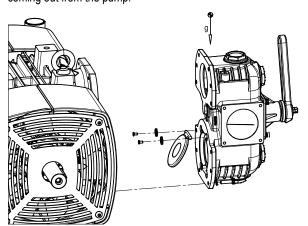


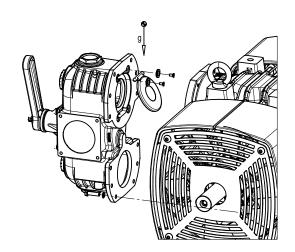
### Adjusting the self-lubricating pump

- The automatic lubricating pump is adjusted by the manufacturer before the shipping.
- If consumption noticeably differs from the indicated value, adjust it as follows:
  - Remove the upper protection cover;
  - Using a screwdriver and a 10 mm wrench, adjust the adjusting screw (K). Close the nut and remount the upper protection cover;
  - It is advisable to turn the screw of  $\frac{1}{4}$  of turn and verify the actual consumption.



Pic. 6.14



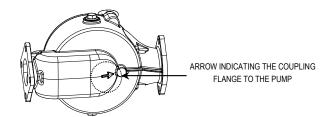


Do not reduce oil consumption below the value indicated in par. 2.5 (for functioning at speeds different from the maximum, flow is proportionate to rotating speed).

•  $\frac{1}{2}$  turn of the adjusting screw causes a variation in the flow of approximately **40 - 80 g/h**, depending on using conditions.

### Maintenance / replacement clapet valve

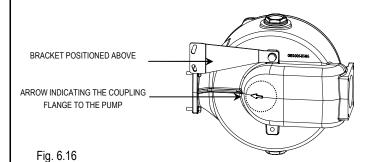
- Periodic checks to avoid the acidental suction of solid bodies.
- Every year: replace the OR;
- Every 3 years: replace the clapet and related screw/bolts.
- When reassembling, rotate the clapet as indicated in the figure above. The valve must allow air flow sucked into the pump and not coming out from the pump.






Pic. 6.15

### Installing filter


• Images 4.11 and 4.12 highlights the correct installation of the filter group. On the rear of the filter is shown an arrow, indicating the mating flange to the pump manifold. The support bracket should always be installed above.

### RVC210



### **RCV 360**

22 / 36





# 7. Malfunctions: troubleshooting

### **PROBLEMS**

| The vacuum pump overheats                           |                                                                                                            |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Cause                                               | Solution                                                                                                   |
| Insufficient or absent lubrication                  | Verify oil and rings. Check oil pump efficiency                                                            |
| Low tank oil level                                  | • Fill tank with oil                                                                                       |
| Excessive rotation speed                            | Reduce rpm to the prescribed working speed                                                                 |
| Prolonged functioning at max vacuum rate            | • Reduce vacuum rate                                                                                       |
| Poor ventilation                                    | <ul> <li>Provide enough room around the pump. Verify fan conditions. Clean fan<br/>protections.</li> </ul> |
| Vacuum and/or exhaust line of insufficient diameter | Check dimensioning                                                                                         |

| Cause                                        | Solution                                                       |
|----------------------------------------------|----------------------------------------------------------------|
| Broken vanes:                                | Clean inner chambers, replace vanes                            |
| - due to infiltrated solids                  | Check the secondary shutoff and filters of the suction line    |
| - due to insufficient lubrication            | Check the oil pump                                             |
| Power transmission breakdown                 | Check and replace the damaged parts                            |
| Ice inside the pump (during the cold season) | Remove ice and slowly start running it. Avoid suction of water |

| Reduced performances                               |                                                      |
|----------------------------------------------------|------------------------------------------------------|
| Cause                                              | Solution                                             |
| Four way changeover valve in idle position         | Move the lever to vacuum or pressure mode end stroke |
| Four way changeover valve not correctly registered | Adjust the functioning play and lubricate            |
| • Worn vanes                                       | • Replace vanes                                      |
| The non-return valve leaks                         | Clean or replace if necessary                        |
| Worn seal rings                                    | • Replace                                            |
| Tank gate valves or gaskets leak                   | Replace damaged or worn parts                        |
| Tank connection pipes leak or are obstructed       | Replace damaged pipes                                |
| Obstructed primary shutoff or suction filter       | • Remove and clean                                   |
| Encrusted exhaust port                             | • Remove and clean                                   |
| Vacuum line components are too small dimensioned   | Verify dimensions for pump maximum performances      |
| Obstructed rubber couplings                        | • Replace                                            |

| Unusual oil consumption            |                                       |
|------------------------------------|---------------------------------------|
| Cause                              | Solution                              |
| Insufficient or absent lubrication | Check and adjust the lubricating pump |

# 8. Scrapping

• Recycling materials allow reducing the environmental impact and respecting the environment.



Do not dispose of in the environment. Dispose of in compliance with the standards in force.

• Before scrapping the machine, the following materials need to be separated and suitably disposed of:

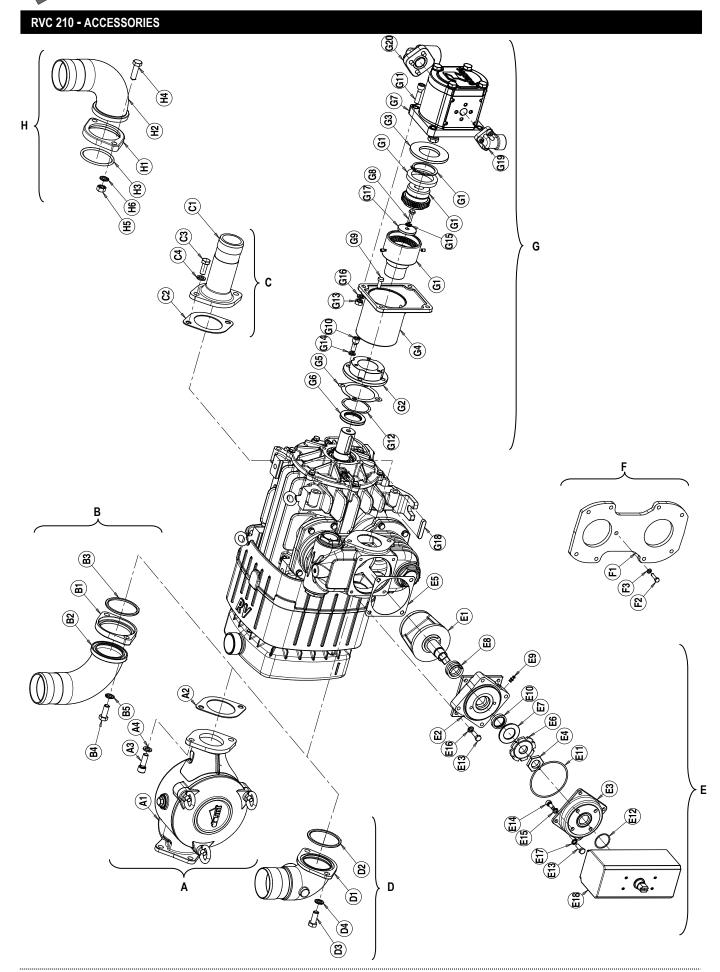
| Material   | Cast Iron | Steel | Alluminum | Copper | Bronze | Rubber | Vane  | Oil   | Gasket |
|------------|-----------|-------|-----------|--------|--------|--------|-------|-------|--------|
| RVC 210    | 80,0 %    | 8,0 % | 9,3 %     | 0,2 %  | 0,1 %  | 0,1 %  | 0,7 % | 0,7 % | 0,8 %  |
| RVC 360    | 82,0 %    | 7,0 % | 9,1 %     | 0,1 %  | 0,1 %  | 0,1 %  | 0,6 % | 0,6 % | 0,7 %  |
| RVC 360 V1 | 85,0 %    | 7,0 % | 6,0 %     | 0,1 %  | 0,1 %  | 0,1 %  | 0,6 % | 0,6 % | 0,5 %  |

Jurop SpA Via Crosera n° 50 33082 Azzano Decimo, PN (Italy) TEL. +39 0434 636811 FAX. +39 0434 636812

http://www.jurop.it e-mail: info@jurop.it



# **RVC 210 D MANIFOLD DX 4**) (8) **(3**) **@** (왕<u>)</u> (<del>§</del>) (%) (B) **(3**) (**8**) (2) **(3**) (N) ፟ [O] 8 (<u>5</u> ຺ **(4**) (2) (E) (%) (2) **2** (8) (8) (<del>2</del> 8 $(\aleph)$ RVC 210 MANIFOLD RIGHT ROTATION LEFT: CODE A610909446 (8) **3 (6)** 4 প্ল (R) (33) (B) 49 (8) **医**(4) (8) $(\overline{\lambda})$ (%) RVC 210: A61... $\overline{(\mathbf{z})}$ (8 **(%**) 28 **(**2) **6**




### RVC 210 D manifold dx

| Pos. | Code       | Description                  | Q.ty | Pos. | Code       | Description            | Q.ty |
|------|------------|------------------------------|------|------|------------|------------------------|------|
| 1    | 15215003E0 | ROTOR RVC210                 | 1    | 37   | 4022200353 | SEAL 4750 VITON        | 2    |
| 2    | 16016001E0 | VANE RVC210 BK               | 4    | 38   | 4022300001 | FILTER                 | 1    |
|      | 16016002E0 | VANE RVC210 F57              | 4    | 39   | 4023100019 | BEARING                | 2    |
| 3    | 1605500000 | COCK HANDLE                  | 1    | 40   | 4023130009 | BUSHING 35X40X17       | 2    |
| 4    | 1608500000 | D-COCK                       | 1    | 41   | 4024251500 | OIL PUMP (ROTATION SX) | 1    |
| 5    | 16100015E0 | SEAL CAP                     | 2    |      | 4024251000 | OIL PUMP (ROTATION DX) | 1    |
| 6    | 16105001E0 | FLANGE                       | 2    | 42   | 4026102807 | SCREW M8X25 GALV.      | 12   |
| 7    | 16120132E0 | SUPPORT                      | 4    | 43   | 4026102808 | SCREW M8X30 GALV.      | 12   |
| 8    | 16220001E0 | RVC210 CONVEYOR DOWEL PIN    | 2    | 44   | 4026102907 | SCREW M10X25 GALV.     | 8    |
| 9    | 1623100000 | COCK COVER                   | 1    | 45   | 4026103109 | SCREW M14X 35 GALV.    | 4    |
| 10   | 16240011E0 | SPACER                       | 3    | 46   | 4026121307 | SCREW M6X20 GALV.      | 2    |
| 11   | 162409YKB0 | SPACER                       | 1    | 47   | 4026121401 | SCREW M8X12 GALV.      | 4    |
| 12   | 1624202300 | SPACER                       | 1    | 48   | 4026121412 | SCREW M8X60 GALV.      | 4    |
| 13   | 16271004E0 | CONVEYOR                     | 1    | 49   | 4026121419 | SCREW M8X110 GALV.     | 3    |
| 14   | 16275002E0 | MANIFOLD                     | 1    | 50   | 4026135414 | SCREW S.TESTA M8X45    | 1    |
| 15   | 16420009E0 | PROTECTION                   | 1    | 51   | 4026135504 | SCREW M 10X10          | 1    |
| 16   | 16631003E0 | PIPE TANK                    | 1    | 52   | 4026300010 | SEAL LK72              | 2    |
| 17   | 16631004E0 | PIPE PUMP REAR CL DX         | 1    | 53   | 4026305715 | NUT M20X1,5            | 1    |
|      | 16631008E0 | PIPE PUMP REAR CL SX         | 1    | 54   | 4026308005 | NUT M8 ZINC.           | 2    |
| 18   | 16631005E0 | PIPE PUMP FRONT CL DX        | 1    | 55   | 4026350503 | WASHER GROWER 6        | 2    |
|      | 16631009E0 | PIPE PUMP FRONT CL DX        | 1    | 56   | 4026350505 | WASHER GROWER 8        | 7    |
| 19   | 16631006E0 | PIPE RVC210                  | 1    | 57   | 4026350706 | WASHER GROWER 8        | 24   |
| 20   | 16631007E0 | PIPE RVC210                  | 1    | 58   | 4026350708 | WASHER GROWER 10       | 8    |
| 21   | 1673001000 | FITTING FILTER               | 1    | 59   | 4026350710 | WASHER GROWER 14       | 4    |
| 22   | 1680700200 | SEAL CUP                     | 1    | 60   | 4026357005 | WASHER M8              | 6    |
| 23   | 16807003E0 | SEAL FLANGE                  | 2    | 61   | 4026500825 | TAB 8X5X20             | 1    |
| 24   | 16850001E0 | WASHER                       | 1    | 62   | 4026500909 | TAB 10X8X50            | 1    |
| 25   | 1685002800 | WASHER 30X8,5X4              | 1    | 63   | 4026510535 | SEAL SEEGER 162        | 2    |
| 26   | 1685100300 | WASHER                       | 2    | 64   | 402664FR05 | EYBOLT M14X40          | 2    |
| 27   | 1685100800 | WASHER 8X14X1,5              | 4    | 65   | 4026702000 | FITTING 4X1/8          | 4    |
| 28   | 16875003E0 | HOUSING RVC210               | 1    | 66   | 4026702708 | WASHER1"1/2            | 3    |
| 29   | 16876001E0 | REAR TANK                    | 1    | 67   | 4026706000 | FITTING 90° 4X1/8      | 2    |
| 30   | 1691000000 | SPRING                       | 1    | 68   | 4026706003 | FITTING 90° 6X1/8      | 2    |
| 31   | 18930002E0 | CLAPET DN80 INOX OR FKM INT. | 1    | 69   | 4026706101 | FITTING 4-1/8          | 2    |
| 32   | 4022200030 | SEAL 41X27X10                | 1    | 70   | 4026904005 | PLUG1"1/2              | 3    |
| 33   | 4022200103 | SEAL 40X62X13                | 2    | 71   | 4026904503 | PLUG M20X1,5           | 1    |
| 34   | 4022200114 | SEAL 40X62X7 3460 VITON      | 2    | 72   | 4026910103 | PLUG TMDF 1"           | 1    |
| 35   | 4022200337 | SEAL 4325 VITON              | 1    | 73   | 4028360010 | FAN (ROTATION SX)      | 1    |
| 36   | 4022200352 | SEAL 4462 VITON              | 1    |      | 4028360011 | FAN (ROTATION DX)      | 1    |
|      |            |                              |      |      | 1892010100 | GASKETS KIT RVC210     | 1    |

e-mail: info@jurop.it







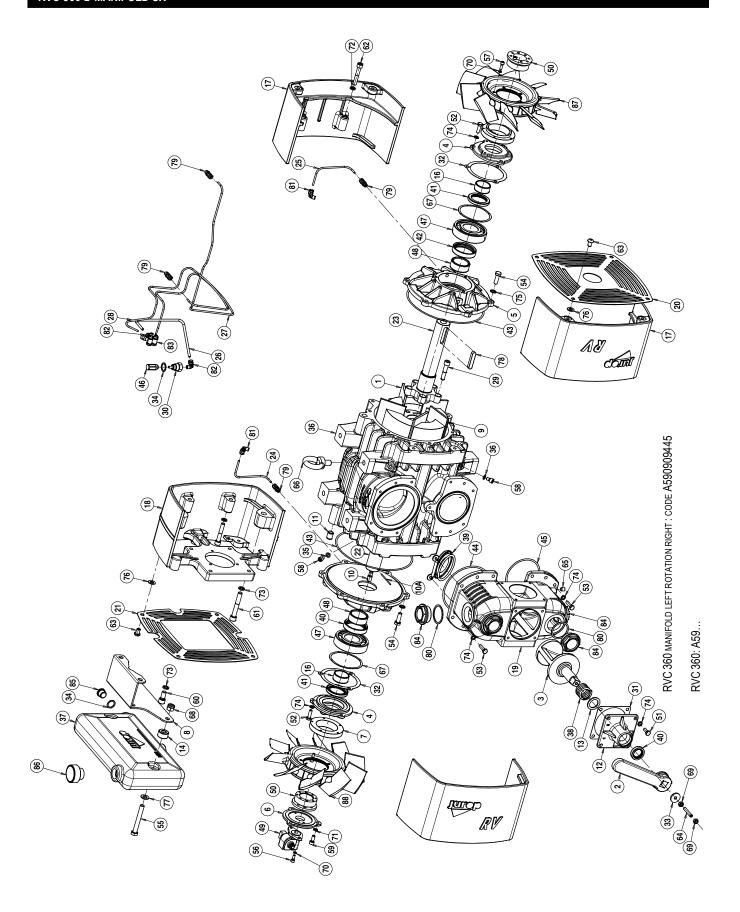
### **RVC 210 Accessories**

| Pos. | Code         | Description                        | Q.ty | Pos. | Code       | Description                   | Q.ty |
|------|--------------|------------------------------------|------|------|------------|-------------------------------|------|
| Α    | 18521005E0   | FILTER GROUP                       | 1    | F    |            | FLANGE                        |      |
| A1   | 14450002E0   | AIR FILTER RVC210                  | 1    | F1   | 16120130E0 | PLATE                         | 1    |
| A2   | 1680614500   | FILTER SEAL                        | 1    | F2   | 4026102707 | SCREW M6X25 GALV.             | 1    |
| A3   | 4026121710   | SCREW M12X35 GALV.                 | 2    | F3   | 4026350705 | WASHER GROWER 6 GALV.         | 1    |
| A4   | 4026350709   | WASHER GROWER 12 GALV.             | 2    |      |            |                               |      |
|      |              |                                    |      | G    |            | HYDRAULIC TRANSMISSION        |      |
| В    | 1852109000   | TURNING CONVEYOR Ø76 KIT           | 1    | G1   | 14701002E0 | JOINT                         | 1    |
| B1   | 1610100000   | FLANGE                             | 1    | G2   | 16100020E0 | FLANGE                        | 1    |
| B2   | 1627100500   | CONVEYOR Ø76                       | 1    | G3   | 16100021E0 | FLANGE                        | 1    |
| В3   | 4022200307   | SEAL OR 6287 VITON                 | 1    | G4   | 1612502800 | HYDRAULIC BOX                 | 1    |
| B4   | 4026103002   | SCREW M12X30 GALV.                 | 2    | G5   | 16807003E0 | BEARING CAP GASKET            | 2    |
| B5   | 4026350709   | WASHER GROWER 12 GALV.             | 2    | G6   | 4022200114 | SEAL 40X62X7 DIN 3460 VITON   | 1    |
|      |              |                                    |      | G7   | 4024106905 | HYDRAULIC MOTOR               | 1    |
| С    | 1627100700   | TURNING CONVEYOR Ø60 KIT           | 1    | G8   | 4026102807 | SCREW M8X25 GALV.             | 1    |
| C1   | 1627100700   | CONVEYOR Ø60                       | 1    | G9   | 4026121405 | SCREW TCEI 8,8M 8X20 GALV.    | 3    |
| C2   | 1680614500   | FILTER SEAL                        | 1    | G10  | 4026121808 | SCREW M10X25 GALV.            | 4    |
| C3   | 4026103002   | SCREW M12X30 GALV.                 | 2    | G11  | 4026121812 | SCREW M10X45 GALV             | 4    |
| C4   | 4026350709   | WASHER GROWER 12 GALV.             | 2    | G12  | 4026300010 | SEAL LK72                     | 2    |
|      |              |                                    |      | G13  | 4026308006 | NUT M10 GALV.                 | 4    |
| D    | 1852108900   | FIXED SUCTION CONVEYOR Ø76 KIT     | 1    | G14  | 4026350506 | WASHER GROWER 10 GALV.        | 4    |
| D1   | 1627100200   | CONVEYOR INLET Ø76                 | 1    | G15  | 4026350706 | WASHER GROWER 8 GALV.         | 2    |
| D2   | 4022200307   | SEALOR 6287 VITON                  | 1    | G16  | 4026350708 | WASHER GROWER 10 GALV.        | 4    |
| D3   | 4026103002   | SCREW M12X30 GALV.                 | 2    | G17  | 4026353801 | WASHER D. 9X45 SP.5 GALV.     | 1    |
| D4   | 4026350709   | WASHER GROWER 12 GALV.             | 2    | G18  | 4026500909 | TAB 10X8X50                   | 1    |
| 2.   | .02000.00    |                                    | _    | G19  | 4026710015 | FITTING                       | 1    |
| E    |              | PNEUMATICALLY OPERATED 4-WAY VALVE |      | G20  | 4026710017 | FITTING                       | 1    |
| E1   | 160857Z7B0   | SWITCH                             | 1    | 020  |            |                               | •    |
| E2   | 161258B4B0   | HOUSING                            | 1    | Н    | 1852104800 | KIT CONVEYOR Ø76 (FOR FILTER) |      |
| E3   | 1640580QB0   | COVER                              | 1    | H1   | 1610100000 | FLANGE                        | 1    |
| E4   | 167007ZAB0   | NUT                                | 1    | H2   | 1627100500 | CONVEYOR Ø76                  | 1    |
| E5   | 1680700200   | COCK COVER GASKET                  | 1    | H3   | 4022200250 | SEAL OR 6287                  | 1    |
| E6   | 168409PQB0   | RING                               | 1    | H4   | 4026103004 | SCREW M12X40 GALV.            | 2    |
| E7   | 168529TFB0   | SPACER                             | 1    | H5   | 4026308007 | NUT M12 GALV.                 | 2    |
| E8   | 1691000200   | SPRING                             | 1    | H6   | 4026350709 | WASHER GROWER 12 GALV.        | 2    |
| E9   | 4022100100   | GRASE                              | 1    |      | .02000.00  |                               | _    |
| E10  | 4022200005   | SEAL 37X27X7                       | 1    |      |            |                               |      |
| E11  | 4022200330   | SEAL OR 3375                       | 1    |      |            |                               |      |
| E12  | 4022200331   | SEAL OR 2137                       | 1    |      |            |                               |      |
| E13  | 4026102807   | SCREW M8X25 GALV.                  | 8    |      |            |                               |      |
| E14  | 4026121405   | SCREW M8X20 GALV.                  | 4    |      |            |                               |      |
| E15  | 4026350505   | WASCHER GROWER 8 GALV.             | 4    |      |            |                               |      |
| E16  | 4026350706   | WASHER GROWER 8 GALV.              | 4    |      |            |                               |      |
| E17  | 4026351505   | WASHER DENT. M8 GALV.              | 4    |      |            |                               |      |
| E18  | 4020331303   | PNEUMATIC ACTUATOR                 | 1    |      |            |                               |      |
| _10  | 1021 100 100 |                                    | •    |      |            |                               |      |



# **RVC 360 D MANIFOLD DX** RVC 360 MANIFOLD RIGHT ROTATION LEFT: CODE A590909446 **B**-0) RVC 360: A59...




### RVC 360 D manifold dx

| Pos. | Code       | Description                 | Q.ty | Pos. | Code       | Description                     | Q.ty |
|------|------------|-----------------------------|------|------|------------|---------------------------------|------|
| 1    | 1601605900 | VANE RV360                  | 5    | 48   | 4023130035 | BUSHING 55X45X22                | 2    |
| 2    | 1605500100 | COCK HANDLE                 | 1    | 49   | 4024251500 | OIL PUMP (ROTATION SX)          | 1    |
| 3    | 1608501700 | D COCK                      | 1    |      | 4024251000 | OIL PUMP (ROTATION DX)          | 1    |
| 4    | 1610508200 | SEAL CAP                    | 2    | 50   | 4025428111 | LOCKING RCK16 40X65             | 2    |
| 5    | 1610513900 | FLANGE RV                   | 2    | 51   | 4026102806 | SCREW M8X20 GALV.               | 4    |
| 6    | 16105CF2B0 | OIL PUMP FLANGE             | 1    | 52   | 4026102807 | SCREW M8X25 GALV.               | 6    |
| 7    | 1611001400 | RVC FUN HUB                 | 2    | 53   | 4026102808 | SCREW M8X30 GALV.               | 12   |
| 8    | 1612034000 | SUPPORT                     | 1    | 54   | 4026102908 | SCREW M10X30 GALV.              | 12   |
| 9    | 1621503500 | ROTOR                       | 1    | 55   | 4026103013 | SCREW M12X90 GALV.              | 2    |
| 10   | 1622002600 | OIL PUMP DRIVE              | 1    | 56   | 4026121305 | SCREW M6X16 GALV.               | 2    |
| 11   | 1622010200 | RV COVEYOR DOWEL PIN        | 2    | 57   | 4026121307 | SCREW M6X20 GALV.               | 10   |
| 12   | 1623100000 | COCK COVER                  | 1    | 58   | 4026121401 | SCREW M8X12 GALV.               | 4    |
| 13   | 1624042800 | SPACER                      | 2    | 59   | 4026121405 | SCREW M8X20 GALV.               | 3    |
| 14   | 162409YKB0 | SPACER                      | 1    | 60   | 4026121708 | SCREW M12X25 GALV.              | 2    |
| 15   | 1624202300 | SPACER                      | 1    | 61   | 4026121719 | SCREW 8 M12X80 GALV.            | 2    |
| 16   | 1626001100 | BUSHING                     | 2    | 62   | 4026121815 | SCREW M10X60 GALV.              | 8    |
| 17   | 1627105100 | CONVEYOR                    | 3    | 63   | 4026122005 | SCREW M10X15 GALV.              | 8    |
| 18   | 1627105200 | CONVEYOR WITH SUPPORT       | 1    | 64   | 4026135414 | SCREW M8X45 GALV.               | 1    |
| 19   | 16275001E0 | MANIFOLD RVC360             | 1    | 65   | 4026135504 | SCREW M10X10 GALV.              | 1    |
| 20   | 1642008300 | PROTECTION                  | 1    | 66   | 4026190102 | EYBOLT M16 GALV.                | 2    |
| 21   | 1642008400 | PROTECTION                  | 1    | 67   | 4026300025 | SPACER                          | 2    |
| 22   | 1650022100 | REAR SHAFT RV               | 1    | 68   | 4026305508 | NUT M12                         | 2    |
| 23   | 1650022200 | FRONT SHAFT RV              | 1    | 69   | 4026308005 | DADO M8 GALV.                   | 2    |
| 24   | 16630009E0 | PIPE RVC360                 | 1    | 70   | 4026350503 | WASHER GROWER 6 GALV.           | 12   |
| 25   | 16630010E0 | PIPE RVC360                 | 1    | 71   | 4026350505 | WASHER GROWER 8 GALV.           | 3    |
| 26   | 16630011E0 | PIPE TANK                   | 1    | 72   | 4026350506 | WASHER GROWER 10 GALV.          | 8    |
| 27   | 16630030E0 | PIPE PUMP FRONT             | 1    | 73   | 4026350508 | WASHER GROWER 12 GALV.          | 4    |
| 28   | 1663064300 | PIPE PUMP REAR              | 1    | 74   | 4026350706 | WASHER GROWER 8 GALV.           | 22   |
| 29   | 1672001600 | SCREW M10X1,5               | 10   | 75   | 4026351506 | WASHER DENT.INT.M10 GALV.       | 12   |
| 30   | 1673001000 | FITTING FILTER              | 1    | 76   | 4026357006 | WASHER M10 GALV.                | 8    |
| 31   | 1680700200 | SEAL CUP                    | 1    | 77   | 4026357007 | WASHER M12 GALV.                | 4    |
| 32   | 1680707300 | SEAL FLANGE                 | 2    | 78   | 4026414617 | PIN 3X40 (ONLY FOR ROTATION SX) | 1    |
| 33   | 1685002800 | WASHER FE 30X8,5 SP.4 ZINC. | 1    | 79   | 4026501006 | TAB 12X8X56                     | 1    |
| 34   | 1685100300 | WASHER DI 20                | 2    | 80   | 4026702000 | FITTING 4X1/8                   | 4    |
| 35   | 1685100800 | WASHER 8X14X1,5             | 4    | 81   | 4026702708 | WASHER 1"1/2                    | 4    |
| 36   | 16875001E0 | HOUSING RVC360              | 1    | 82   | 4026706000 | FITTING 90°4X1/8                | 2    |
| 37   | 1687600000 | REAR TANK                   | 1    | 83   | 4026706003 | FITTING 90° 6X1/8               | 2    |
| 38   | 1691000000 | SPRING                      | 1    | 84   | 4026706101 | FITTING 4-1/8 S                 | 2    |
| 39   | 18930003E0 | CLAPET DN100 INOX           | 1    | 85   | 4026904006 | PLUG 1" 1/2                     | 4    |
| 40   | 4022200030 | SEAL 41X27X10 GP NBR        | 1    | 86   | 4026904503 | PLUG M20X1,5                    | 1    |
| 41   | 4022200044 | SEAL 65X45X8                | 2    | 87   | 4026910103 | PLUG 1"                         | 1    |
| 42   | 4022200113 | SEAL 70X55X15 VITON         | 2    | 88   | 4028360000 | FAN (ROTATION SX)               | 1    |
| 43   | 4022200309 | SEAL OR 4875 VITON          | 2    |      | 4028360001 | FAN (ROTATION DX)               | 1    |
| 44   | 4022200335 | SEAL OR 4575 VITON          | 1    | 89   | 4028360001 | FAN (ROTATION SX)               | 1    |
| 45   | 4022200351 | SEAL OR 4412 VITON          | 1    |      | 4028360000 | FAN (ROTATION DX)               | 1    |
| 46   | 4022300001 | FILTER NYLON D.6            | 1    |      |            | ,                               |      |
| 47   | 4023100047 | BEARING 6309/C3             | 2    |      | 1892009400 | GASKETS KIT RVC360              | 1    |

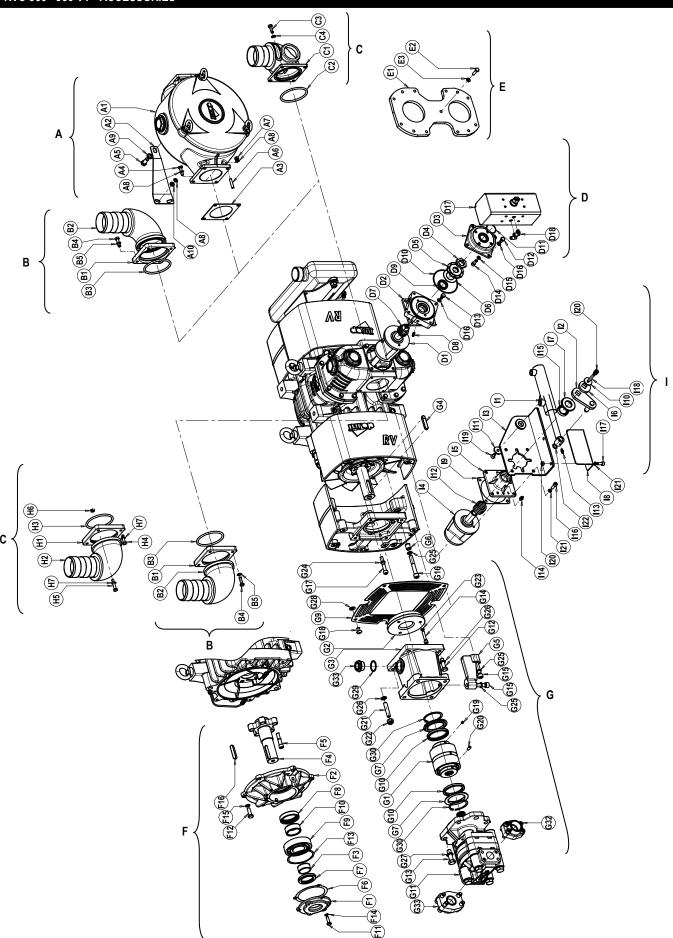
e-mail: info@jurop.it



### **RVC 360 D MANIFOLD SX**






### RVC 360 D manifold sx

| Pos. | Code       | Description                     | Q.ty | Pos. | Code       | Description               | Q.ty |
|------|------------|---------------------------------|------|------|------------|---------------------------|------|
| 1    | 1601605900 | VANE RV360                      | 5    | 47   | 4023100047 | BEARING 6309/C3           | 2    |
| 2    | 1605500100 | COCK HANDLE                     | 1    | 48   | 4023130035 | BUSHING 55X45X22          | 2    |
| 3    | 1608501700 | D COCK                          | 1    | 49   | 4024251000 | OIL PUMP (ROTATION DX)    | 1    |
| 4    | 1610508200 | SEAL CAP                        | 2    |      | 4024251500 | OIL PUMP (ROTATION SX)    | 1    |
| 5    | 1610513900 | FLANGE RV                       | 2    | 50   | 4025428111 | LOCKING RCK16 40X65       | 2    |
| 6    | 16105CF2B0 | OIL PUMP FLANGE                 | 1    | 51   | 4026102806 | SCREW M8X20 GALV.         | 4    |
| 7    | 1611001400 | RVC FUN HUB                     | 2    | 52   | 4026102807 | SCREW M8X25 GALV.         | 6    |
| 8    | 1612034000 | SUPPORT                         | 1    | 53   | 4026102808 | SCREW M8X30 GALV.         | 12   |
| 9    | 1621503500 | ROTOR                           | 1    | 54   | 4026102908 | SCREW M10X30 GALV.        | 12   |
| 10   | 1622002600 | OIL PUMP DRIVE                  | 1    | 55   | 4026103012 | SCREW M12X80 GALV.        | 2    |
| 10A  | 4026414617 | PIN 3X40 (ONLY FOR ROTATION SX) | 1    | 56   | 4026121305 | SCREW M6X16 GALV.         | 2    |
| 11   | 1622010200 | RV COVEYOR DOWEL PIN            | 2    | 57   | 4026121307 | SCREW M6X20 GALV.         | 10   |
| 12   | 1623100000 | COCK COVER                      | 1    | 58   | 4026121401 | SCREW M8X12 GALV.         | 4    |
| 13   | 1624027500 | COCK SPRING                     | 1    | 59   | 4026121405 | SCREW M8X20 GALV.         | 3    |
| 14   | 1624042800 | SPACER                          | 2    | 60   | 4026121708 | SCREW M12X25 GALV.        | 2    |
| 15   | 1624202300 | SPACER                          | 1    | 61   | 4026121719 | SCREW 8 M12X80 GALV.      | 2    |
| 16   | 1626001100 | BUCHING                         | 2    | 62   | 4026121815 | SCREW M10X60 GALV.        | 8    |
| 17   | 1627105100 | CONVEYOR                        | 3    | 63   | 4026122005 | SCREW M10X15 GALV.        | 8    |
| 18   | 1627105200 | CONVEYOR WITH SUPPORT           | 1    | 64   | 4026135414 | SCREW M8X45 GALV.         | 1    |
| 19   | 16275001E0 | MANIFOLD RVC360                 | 1    | 65   | 4026135504 | SCREW M10X10 GALV.        | 1    |
| 20   | 1642008300 | PROTECTION                      | 1    | 66   | 4026190102 | EYBOLT M16 GALV.          | 2    |
| 21   | 1642008400 | PROTECTION                      | 1    | 67   | 4026300025 | SPACER                    | 2    |
| 22   | 1650022100 | REAR SHAFT RV                   | 1    | 68   | 4026305508 | NUT M12                   | 2    |
| 23   | 1650022200 | FRONT SHAFT RV                  | 1    | 69   | 4026308005 | DADO M8 ZINC.             | 2    |
| 24   | 16630009E0 | PIPE RVC360                     | 1    | 70   | 4026350503 | WASHER GROWER 6 GALV.     | 12   |
| 25   | 16630010E0 | PIPE RVC360                     | 1    | 71   | 4026350505 | WASHER GROWER 8 GALV.     | 3    |
| 26   | 16630012E0 | PIPE TANK                       | 1    | 72   | 4026350506 | WASHER GROWER 10 GALV.    | 8    |
| 27   | 16630032E0 | PIPE PUMP FORNT                 | 1    | 73   | 4026350508 | WASHER GROWER 12 GALV.    | 4    |
| 28   | 1663069900 | PIPE PUMP REAR                  | 1    | 74   | 4026350706 | WASHER GROWER 8 GALV.     | 22   |
| 29   | 1672001600 | SCREW M10X1,5                   | 10   | 75   | 4026351506 | WASHER DENT.INT.M10 GALV. | 12   |
| 30   | 1673001000 | FITTING FILTER                  | 1    | 76   | 4026357006 | WASHER M10 GALV.          | 8    |
| 31   | 1680700200 | SEAL CUP                        | 1    | 77   | 4026357007 | WASHER M12 GALV.          | 4    |
| 32   | 1680707300 | SEAL FLANGE                     | 2    | 78   | 4026501006 | TAB 12X8X56               | 1    |
| 33   | 1685002800 | WASHER FE 30X8,5 SP.4 GALV      | 1    | 79   | 4026702000 | FITTING 4X1/8             | 4    |
| 34   | 1685100300 | WASHER DI 20                    | 2    | 80   | 4026702708 | WASHER 1"1/2              | 4    |
| 35   | 1685100800 | WASHER 8X14X1,5                 | 4    | 81   | 4026706000 | FITTING 90°4X1/8          | 2    |
| 36   | 16875001E0 | HOUSING RVC360                  | 1    | 82   | 4026706003 | FITTING 90° 6X1/8         | 2    |
| 37   | 1687600000 | REAR TANK                       | 1    | 83   | 4026706101 | FITTING 4-1/8 S           | 2    |
| 38   | 1691000000 | SPRING                          | 1    | 84   | 4026904005 | PLUG 1" 1/2               | 4    |
| 39   | 18930003E0 | CLAPET DN 100 INOX              | 1    | 85   | 4026904503 | PLUG M20X1,5              | 1    |
| 40   | 4022200030 | SEAL 41X27X10 GP NBR            | 1    | 86   | 4026910103 | PLUG 1"                   | 1    |
| 41   | 4022200044 | SEAL 65X45X8                    | 2    | 87   | 4028360000 | FAN (ROTATION SX)         | 1    |
| 42   | 4022200113 | SEAL 70X55X15 VITON             | 2    |      | 4028360001 | FAN (ROTATION DX)         | 1    |
| 43   | 4022200309 | SEAL OR 4875 VITON              | 2    | 88   | 4028360001 | FAN (ROTATION DX)         | 1    |
| 44   | 4022200335 | SEAL OR 4575 VITON              | 1    |      | 4028360000 | FAN (ROTATION SX)         | 1    |
| 45   | 4022200351 | SEAL OR 4412 VITON              | 1    |      |            | ,                         |      |
| 46   | 4022300001 | FILTRER NYLON D.6               | 1    |      | 1892009400 | GASKETS KIT RVC360        | 1    |

e-mail: info@jurop.it



### **RVC 360 - 360 V1 - ACCESSORIES**





RVC 360 - 360 V1 - Accessories

| Pos. | Code       | Description                        | Q.ty | Pos. | Code        | Description                   | Q.ty |
|------|------------|------------------------------------|------|------|-------------|-------------------------------|------|
| Α    | 18521002E0 | FILTER GROUP                       | 1    | F5   | 1672001600  | SCREW TCEI M10X1,5            | 10   |
| A1   | 14450001E0 | AIR FILTER RVC360                  | 1    | F6   | 1680707300  | GASKET                        | 2    |
| A2   | 16120127E0 | SUPPORT                            | 1    | F7   | 4022200044  | SEAL 65X45X8                  | 2    |
| A3   | 1680709900 | FILTER SEAL                        | 1    | F8   | 4022200113  | SEAL 70X55X15 VITON           | 2    |
| A4   | 4026102808 | SCREW M8X30 GALV                   | 2    | F9   | 4023100047  | BEARING 6309                  | 2    |
| A5   | 4026103001 | SCREW M12X25 ZINC.                 | 1    | F10  | 4023130035  | BUSHING 55X45X22              | 2    |
| A6   | 4026171603 | SCREW M8X30 GALV.                  | 2    | F11  | 4026102807  | SCREW M8X25 GALV.             | 6    |
| A7   | 4026308005 | NUT M8                             | 2    | F12  | 4026102908  | SCREW M10X30 GALV.            | 12   |
| A8   | 4026350706 | WASHER GROWER 8 GALV.              | 6    | F13  | 4026300025  | SPACER                        | 2    |
| A9   | 4026350709 | WASHER GROWER 12 GALV.             | 1    | F14  | 4026350706  | WASHER GROWER 8 GALV.         | 19   |
| A10  | 4026357005 | WASHER M8 GALV.                    | 2    | F15  | 4026351506  | WASHER M10 GALV.              | 12   |
|      |            |                                    |      | F16  | 4026501006  | TAB 12X8X56                   | 1    |
| В    | 1852103800 | TURNING CONVEYOR Ø76 KIT           |      | •    |             |                               |      |
| D.4  | 1852103900 | TURNING CONVEYOR Ø80 KIT           |      | G    | 4.470400700 | HYDRAULIC TRANSMISSION        |      |
| B1   | 1610101100 | FLANGE                             | 1    | G1   | 1470106700  | JOINT                         | 1    |
| B2   | 1627102800 | CONVEYOR D.76                      | 1    | G2   | 1610052300  | FLANGE                        | 1    |
|      | 1627102700 | CONVEYOR D.80                      | 1    | G3   | 1612501000  | HYDRAULIC BOX                 | 1    |
| B3   | 4022200310 | SEAL OR 6362 VITON                 | 1    | G4   | 1617015500  | TAB                           | 1    |
| B4   | 4026102808 | SCREW M8X30 ZINC.                  | 4    | G5   | 16171001E0  | SQAURE HDR                    | 1    |
| B5   | 4026350706 | WASHER GROWER 8 GALV.              | 4    | G6   | 1622010200  | PIN                           | 4    |
|      |            |                                    |      | G7   | 1624042300  | SPECER HDR                    | 2    |
| С    | 1852103300 | FIXED SUCTION CONVEYOR Ø76 KIT     |      | G8   | 1627105200  | CONVOYER                      | 2    |
|      | 1852103400 | FIXED SUCTION CONVEYOR Ø80 KIT     |      | G9   | 1642008400  | PROTECTION                    | 2    |
| C1   | 1627102000 | CONVEYOR INLET D.76                | 1    | G10  | 4022200011  | SEAL 64X80X8 NBR              | 2    |
|      | 1627101300 | CONVEYOR INLET. D.80               | 1    | G11  | 4024107009  | HYDRAULIC MOTOR               | 1    |
| C2   | 4022200310 | SEAL OR 6362 VITON                 | 1    | G12  | 4026103004  | SCREW M12X40 GALV.            | 4    |
| C3   | 4026102807 | SCREW INOX304 M8X25                | 4    | G13  | 4026103111  | SCREW M14X45 GALV.            | 4    |
| C4   | 4026350706 | WASHER GROWER 8 GALV.              | 4    | G14  | 4026121409  | SCREW M8X40 GALV.             | 3    |
|      |            |                                    |      | G15  | 4026121713  | SCREW M12X50 GALV.            | 2    |
| D    | 143028B7B0 | PNEUMATICALLY OPERATED 4-WAY VALVE |      | G16  | 4026121719  | SCREW TE TCEI M12X80 GALV.    | 4    |
| D1   | 160858KNB0 | SWITCH                             | 1    | G17  | 4026121815  | SCREW TCEI M10X60 GALV.       | 8    |
| D2   | 161258B4B0 | HOUSING                            | 1    | G18  | 4026122005  | SCREW M10X15 GALV.            | 8    |
| D3   | 1640580QB0 | COVER                              | 1    | G19  | 4026136005  | SCREW M8X12                   | 1    |
| D4   | 167007ZAB0 | NUT                                | 1    | G20  | 4026136009  | SCREW M8X20 GALV.             | 1    |
| D5   | 168409PQB0 | RING                               | 1    | G21  | 4026171203  | SCREW M12X40 GALV.            | 2    |
| D6   | 168529TFB0 | SPACER                             | 1    | G22  | 4026305508  | NUT M12                       | 4    |
| D7   | 1691000200 | SPRING                             | 1    | G23  | 4026350505  | WASHER GROWER 8 GALV.         | 6    |
| D8   | 4022100100 | GREASE M6X1                        | 1    | G24  | 4026350506  | WASHER GROWER 10 ZINC.        | 8    |
| D9   | 4022200005 | SEAL 37X27X7                       | 1    | G25  | 4026350508  | WASHER GROWER 12 GALV.        | 8    |
| D10  | 4022200330 | SEAL OR 3375                       | 1    | G26  | 4026350709  | WASHER GROWER 12 GALV.        | 4    |
| D11  | 4022200331 | SEAL OR 2137 NBR                   | 1    | G27  | 4026350710  | WASHER GROWER 14              | 4    |
| D12  | 4026102804 | SCREW M8X16 ZINC.                  | 4    | G28  | 4026357006  | WASHER M10 GALV.              | 8    |
| D13  | 4026107110 | SCREW M8X25                        | 4    | G29  | 4026359001  | WASHER 40X33,5X1,5            | 1    |
| D14  | 4026120403 | SCREW M8X20                        | 4    | G30  | 4026510040  | SEAL SEEGER E 63              | 2    |
| D15  | 4026350505 | WASHER GROWER 8 GALV.              | 4    | G31  | 4026711003  | FLANGE                        | 1    |
| D16  | 4026350909 | WASHER M8                          | 8    | G32  | 4026711004  | FLANGE                        | 1    |
| D17  | 4027100405 | PNEUMATIC ACTUATOR                 | 1    | G33  | 4026904003  | PLUG 1" ZINC.                 | 1    |
| D18  | 4027421206 | FITTING                            | 2    |      |             |                               |      |
|      |            |                                    |      | Н    | 1852113000  | KIT CONVEYOR Ø76 (FOR FILTER) |      |
| E    |            | FLANGE                             |      |      | 1852113100  | KIT CONVEYOR Ø80 (FOR FILTER) |      |
| E1   | 16120122E0 | PLATE                              | 1    | H1   | 1610101100  | FLANGE                        | 1    |
| E2   | 4026102808 | SCREW M8X30 GALV.                  | 1    | H2   | 1627102800  | CONVOYER D.76                 | 1    |
| E3   | 4026350706 | WASHER GROWER 8 GALV.              | 1    |      | 1627102700  | CONVOYER D.80                 | 1    |
|      |            |                                    |      | H3   | 4022200310  | SEALOR 6362 IN VITON          | 1    |
| F    |            | RVC 360 V1                         |      | H4   | 4026102808  | SCREW M8X30 GALV.             | 2    |
| F1   | 1610508200 | FLANGE                             | 2    | H5   | 4026102810  | SCREW M8X40 GALV.             | 2    |
| F2   | 1610513900 | FLANGE RV                          | 2    | H6   | 4026308005  | NUT M8 GALV.                  | 2    |
|      | 1626001100 | BUSHING                            | 2    | H7   | 4026350706  | WASHER GROWER 8 GALV.         | 4    |
| F3   | .0200000   |                                    |      |      |             |                               |      |

e-mail: info@jurop.it



| -    |            |                             |      |      |            |                         |      |
|------|------------|-----------------------------|------|------|------------|-------------------------|------|
| Pos. | Code       | Description                 | Q.ty | Pos. | Code       | Description             | Q.ty |
| ı    | 143029K2B0 | KIT HYDRAULIC ACTUATOR      |      | 112  | 1691000000 | SPRING                  | 1    |
| 11   | 143027T6B0 | CILINDER                    | 1    | I13  | 4022100100 | GREASER M6X1            | 1    |
| 12   | 150206XXB0 | LEVER                       | 1    | 114  | 4022100107 | GREASER 45              | 1    |
| 13   | 151309JVB0 | BASE                        | 1    | 115  | 4022200030 | SEAL 41X27X10           | 1    |
| 14   | 1608503200 | MANIFOLD                    | 1    | I16  | 4026120405 | SCREW TCEI M8X25        | 4    |
| 15   | 1623100800 | COVER                       | 1    | 117  | 4026121405 | SCREW TCEI M8X20 GALV.  | 2    |
| 16   | 16240A0IB0 | SPACER                      | 1    | 118  | 4026135414 | SCREW M8X45 ZINC.       | 1    |
| 17   | 1624202300 | SPACER                      | 1    | 119  | 4026155705 | SCREW TSPEI M8X16 GALV. | 1    |
| 18   | 164206XYB0 | ACTUATOR PROTECTION         | 1    | 120  | 4026308005 | NUT M8 ESAG.GALV.       | 4    |
| 19   | 1680700200 | GASKET                      | 1    | 121  | 4026350505 | WASHER GROWER 8 GALV.   | 6    |
| 110  | 1685002800 | WASHER FE 30X8,5 SP.4 GALV. | 1    | 122  | 4026510012 | SEEGER E14              | 1    |
| 111  | 168509U0B0 | WASHER                      | 1    |      |            |                         |      |

### 9. COOLING FANS INSTALLATION INSTRUCTIONS (RVC 360)

### Material

| Codice     | Descrizione                                     |
|------------|-------------------------------------------------|
| 4025428111 | 4 SCREW LOCKING COLLAR                          |
| 4028360000 | CLOCKWISE ROTATION FAN                          |
| 4028360001 | COUNTER CLOCKWISE ROTATION FAN                  |
| 1611001400 | FAN HUB                                         |
| 4046850012 | THREAD-LOCKER MEDIUM RESISTANCE LOCTITE 243 (*) |

(\*): 10 cc tube available upon request.

### Before installation

- Clean all the components: remove dirt and particles that can prevent a correct assembly.
  - Prepare the locking element:
  - Align bushing keys.
  - Apply medium resistance thread-locker on the locking screw threads. Pour on the thread evenly.
  - Fasten the 4 screws and leave them loose by at least 2 full turns.
- Do not use the threaded holes that can be seen on the locking collar front. These are used for the disassemble.



Do not use the threaded holes that can be seen on the locking collar front. These are used for the disassemble.

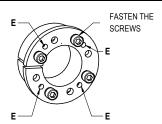
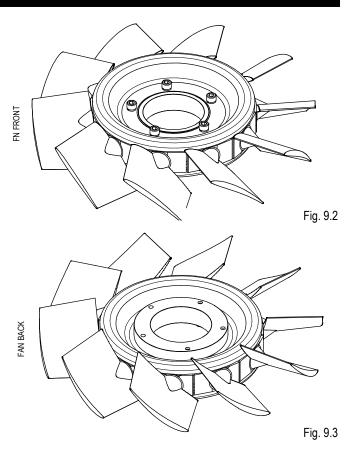
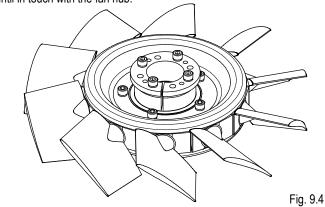



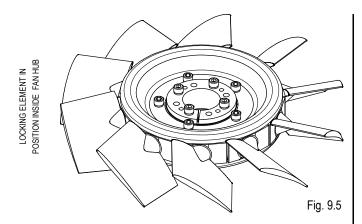

Fig. 9.1


### E: Threaded holes for disassembly

- Install the steel hub and the fan by means of the 5 screws and washers.
- Apply medium resistance thread-locker on the locking screw threads. Pour on the thread evenly.
  - Fasten the screws following a cross shake pattern.
- Check the screw fastening twice to be sure they have been evenly tightened.



### Installation

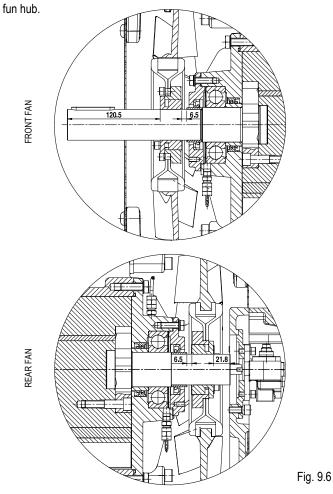

• Insert the locking collar inside the fan hub as shown in pictures below, until in touch with the fan hub.



TEL. +39 0434 636811 Fax. +39 0434 636812

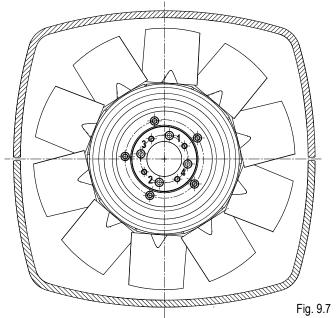
http://www.jurop.it e-mail: info@jurop.it






- Install pre assembled fan on the shaft.
- Be careful to respect the suggested distance of 9 mm in between the fan hub and the end of stroke on the shaft.




Respect the suggested distance of 9 mm in between the fan hub and the end of stroke on the shaft

- Use a spacer to keep the suggested distance.
- $\bullet$  Bring in position, and keep the locking element in touch with the



- Tighten the 4 screws on the locking collar with a torque of 13 Nm. Fasten them following a cross shaped pattern.
- Lower the torque to 12 Nm and fasten the screws again, always following a cross shaped pattern.

• Check one last time the screws to be sure that they've been tightened evenly.



### Disassemble

- Remove the 4 screws that keep the locking collar in place (Fig. 9.8).
  - If possible, use an impulse screwdriver.
- Heat the hub with if the screws are stuck because of dirt, rust or if thread locking glue has been used.
- Once the two parts of the locking collar separate, it's possible to remove the fan from the shaft.
- If needed, insert a flat head screwdriver in the crack, to help the removal.



Heat the hub with if the screws are stuck because of dirt, rust or if thread locking glue has been used.

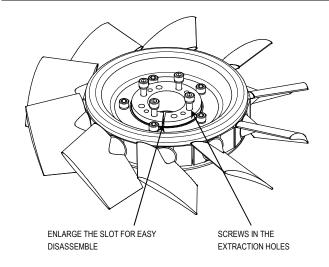



Fig. 9.8

| Model                         | Issue date               | Revision No.       | Revision date                   | Filled out by      | Viewed by         |
|-------------------------------|--------------------------|--------------------|---------------------------------|--------------------|-------------------|
| <b>Model</b><br>RVC 210 - 360 | Issue date<br>10-09-2013 | Revision No.<br>07 | <b>Revision date</b> 08-04-2019 | Filled out by U.T. | Viewed by<br>A.T. |
|                               |                          |                    |                                 |                    |                   |

Fax. +39 0434 636812

http://www.jurop.it e-mail: info@jurop.it

Jurop SpA reserves the right to modify the products described in this manual without prior notice.